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Using Prior InformationUsing Prior Information
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Prior Knowledge and Adaptive ProcessingPrior Knowledge and Adaptive Processing

Current algorithms are likelihood based and/or use 
power based metrics
– E.g. Capon’s method (min. power with unit gain in Θ), 

Bartlett (max. power in Θ), ML with Gaussian pdf’s.

Use Bayes Risk or posterior probabilities for 
formulation
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GMTI/SAR HandoffGMTI/SAR Handoff

0 Vel.

GMTIGMTI

SAR

Refocused
SAR

Long term goal:  Single RADAR processing paradigm 
instead of GMTI vs. SAR
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Minimum Risk ClassifierMinimum Risk Classifier

Based on the risk of declaring hypothesis Hk when Hj
is true, j=1,…,J

Ckj is the cost of declaring Hk when Hj is true
– some target misclassification more costly than others

P(Hj) is the prior probability of Hj
– First order:  P(Hj)=1/J

When then minimum risk classifier 
becomes maximum likelihood (ML)

)|()()|()|(min
11

j

J

j
jkj

J

j
jkjkH

HxPHPCxHPCxHR
k

∑∑
==

==

⎩
⎨
⎧

≠
=

=
jkC
jk

C
kj

kj

0

⎩
⎨
⎧

≠
=

=
jk
jk

Ckj 1
0

)|(max jH
HxP

j



6www.altarum.org

ML vs. MAP (Gaussian Case)ML vs. MAP (Gaussian Case)
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Bartlett vs. Minimum MSEBartlett vs. Minimum MSE

Bartlett:  find                    subject to

Alternatively minimize 

{ }rwE
w

+max 1=w

)()(
)(ˆ)(maxˆ

θθ
θθθ

θ aa
aRa

Bartlett +

+

=

( ) ( )dRARpApRaAdA ara |))(ˆ( |
2∫ ∫

∞

∞−

∞

∞−

−=ℜ

( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Λ−= +

+

θ
θθ
θθθ

θ AMSE aa
aRa

)()(
)(ˆ)(maxˆ



8www.altarum.org

Sampling Strategies for TrainingSampling Strategies for Training

General class of bootstrap methods
– ‘leave one out’ is a special case (the moving hole)

Bayesian bootstraping methods
– Sampling where the priors instruct
– Randomized subsetting and monitoring of performance

• E.g. fall off rate of SVD coefficients vs. sample set

Boosting the margins (well known robust approach)
– Use the priors to weight the training data
– Modify weights to attain consistency
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Model Mismatch Can Adversely Effect Detector Model Mismatch Can Adversely Effect Detector 
PerformancePerformance

Likelihood ratio test is fragile for unknown Θ

Mazimum likelihood estimators are fragile for 
unknown pdf’s

Unknown pdf’s and Θ both detract from GLRT 
performance
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X

Uncertainties in Parameter Estimates
-contaminants (buildings, discretes, 
etc.) and inhomogeneities in data

Uncertainties in distributions
-”mathematically tractable” pdfs
-heavier tails than anticipated
-massive variability(aspect, 
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Robust GLRTRobust GLRT

Minimax formulation
– “minimize worst case error”

– Suffices for find “least favorable pair” (g0, g1) – saddle point
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Minimax Minimax Robust DetectionRobust Detection

Example:  X1,…,XN are iid

Let 
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Minimax Minimax Robust Parameter EstimationRobust Parameter Estimation

Classical parameter estimation
– ML is most efficient
– ML is very fragile

Example: , estimate µ from X1,…,XN (Poor, 
19985)
– ML estimate

– Let
• For

– Minimax robust estimator,

Same situation for covariance estimates
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Characteristics of Robust SystemsCharacteristics of Robust Systems

Test statistic and estimators often have the form          
where l is unbounded

Robust estimators guard against unwaranted outliers 
and/or heavier pdf tails
– Can be viewed as a “soft limiting” system

Gives up some perofrmance (e.g. optimality) to be 
less fragile with respect to unknown information 
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Minimax Minimax Robust Linear FilteringRobust Linear Filtering

Linear filter designed to maximize SNR for known assumed power 
spectral densities of signal and noise

Assume only knowledge of total signal and noise powers and 
fractional signal and noise powers in a specific frequency band 
(Vastola and Poor, 1983)
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Robust Robust Minimax Minimax DetectionDetection--SummarySummary

Incorporates uncertainty in both statistical models and 
unavoidable data anomalies

Useful in both estimation and final detection in a GLRT
– Estimation:  power spectral density models, cultural discretes, 

inhomogeneities
– Detection:  heavier tailed distributions than anticipated, target 

uncertainties

Gives up some performance in the ‘perfect’ scenario to guard 
against real-world uncertainties
– Optimum detectors are non-robust to real-world uncertainties

Average performance of the robust detector over all the 
uncertainties may be significantly better than the optimum 
detector

Robust detectors allow the incorporation of some target 
knowledge into the detector
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Processing ArchitectureProcessing Architecture
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Proposed TasksProposed Tasks

Risk based formulation of spectral analysis techniques: Re-derive 
STAP algorithms (e.g. post-Doppler STAP) using a minimum Risk formulation.  Identify how the prior 
information (maps, signatures, etc.) enter into the formulation. Analyze the performance of the minimum 
risk STAP algorithm using the ISL derived data cube.  Metrics of performance include SINR loss as a 
function of speed, cross section, etc.

Small sample size robust strategies: Incorporate sampling strategies such as 
jackknifing, boosting, and cross validation for both classical STAP algorithms and minimum risk 
formulations.  These strategies will be compared to classic sampling strategies from the perspective of 
statistical efficiency, bias and convergence to the Cramer-Rao bound.

Robust formulations: Explore the formulation of STAP algorithms based on fundamentally 
robust formulations such as min/max, maximal invariance and exact robustness theory.  These algorithms 
will be studied for the scenario of applicability and their performance over a class of known and unknown 
interferers.

Support for the architecture working group: We will support the working group 
which is defining the overall KASSPER architecture to determine where and how any prior information is 
being incorporated..


