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+ DTED/DFADALCLU data
» Previous “Look™ Data

+ Cultural Databases

* Roadways

* Background Alr & Surface Traffic
+ Qwmship Position, Velocity,

« System Callbration Information
« EMI Data
* Other “It's an architecture NOT an algorithm!”

+GMTI. SAR, IFSAR

Orientation

In case | forgot to mention:




../ . Prior Knowledge and Adaptive Processing

Radar Environmental Knowledge Bases
(DTED/DFADILCLU, SAR, etc.)

Hett (max. power in ®), ML with Gaussian pdf’s.

; Use Bayes Risk or posterior probabilities for

KASSPER
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AZIMUTH

Long term goal: Single RADAR processing paradigm
iInstead of GMTI vs. SAR




/A Minimum RiIsk Classifier

<&

Based on the risk of declaring hypothesis H, when H,
IS true, |=1,...,J

J J
minR(H, |X) =) C4P(H;[X)=> C;P(H)P(X|H))
K j=1 j=1

<&

C,; Is the cost of declaring H, when H; is true
— some target misclassification more costly than others

c 0 k=]
91Cy k=]

P(H;) Is the prior probability of H;
— First orde{: Pk(Hj)_:llJ
=

<&

0
When“i =1 k=j then minimum risk classifier
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becomes maximum likelihood (ML)
max P(X|H

J
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e ML vs. MAP (Gaussian Case)

1 r(t)=As 2 o2
« Let prla(R | A(H)): R [r(t)-As()|/
(o)
_ aAal9) Prior knowledge of
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Prior knowledge will impact estimator




. Bartlett vs. Minimum MSE

+ Bartlett: find mvevixEﬁW*r} subject to w=1

A a* (0)Ra(d
HBartIett = Mmax +( ) ( )
¢ a(0)a(9)

+ Alternatively minimize

% = [dA [ (A-a(R))? p,(A)p,.(R] AR

b - mglx( a’(0)Ra(0) AA(H)j

a*(0)a(o)




I, Sampling Strategies for Training

<&

General class of bootstrap methods
— ‘leave one out’ is a special case (the moving hole)

<

Bayesian bootstraping methods
— Sampling where the priors instruct

— Randomized subsetting and monitoring of performance
« E.g. fall off rate of SVD coefficients vs. sample set

<&

Boosting the margins (well known robust approach)
— Use the priors to weight the training data
— Modify weights to attain consistency




Model Mismatch Can Adversely Effect Detector
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Performance

Likelihood ratio test is fragile for unknown ®

Mazimum likelihood estimators are fragile for
unknown pdf’s

Unknown pdf's and ® both detract from GLRT
performance

>
LRT F
R L <
f()’ fl Uncertainties in distributions
A -”mathematically tractable” pdfs

-heavier tails than anticipated

ESt 9 -massive variability(aspect,
’ illumination, state, etc.)

A 4

Uncertainties in Parameter Estimates

-contaminants (buildings, discretes,
etc.) and inhomogeneities in data




/A Robust GLRT

« Minimax formulation
— “minimize worst case error”

min( max _e(g,, 91i¢))

¢ 00,91 )eFoxFy
— Suffices for find “least favorable pair” (g,, 9,) — saddle point
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/A Minimax Robust Detection

+ Example: Xi,..., X\ are iid
H,: X, ~N(01) = f,Vi
H,: X, ~N(@L1) = f,Vi

v Let F={f:f=(1-g)f,+ghlandF, ={f : f =(1-g)f, +5h}
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. Minimax Robust Parameter Estimation

+ Classical parameter estimation
— ML is most efficient
— ML is very fragile

+ Example:X ~ X(u.1), estimate u from X,,..., X\ (Poor,
19985)

— ML estimate /i, :%ZE X, (sample average)

—Let F={f:f=01-eN(u1)+eh(-—u)}
+ For £#0,0; —>oo (outliers, heavy tailed h)

— Minimax robust estimator, z, : soft limit, sample average
[y is92% efficient with o =1.5

+ Same situation for covariance estimates
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Characteristics of Robust Systems

Test statistic and estimators often have the form :le(xi)
where | iIs unbounded

Robust estimators guard against unwaranted outliers
and/or heavier pdf tails
— Can be viewed as a “soft limiting” system

Gives up some perofrmance (e.g. optimality) to be
less fragile with respect to unknown information

LRT

90,9,




C Minimax Robust Linear Filtering
+ Linear filter designed to maximize SNR for known assumed power
spectral densities of signal and noise
+ Assume only knowledge of total signal and noise powers and

fractional signal and noise powers in a specific frequency band
(Vastola and Poor, 1983)

E__-i;, —— .__._I._.__ .I. - _I
T M Heo o! (2 0, % o) ,
5 | TTTHe ot oy (g desxn g
—— Hg ot ils Worst Cose 1
a O _
=
'l
2 5}-
':':‘ .-"._,I—-;H
O PRTte
i Bk -
(e 2 >
.l"— —
-\—\.._\_\_\_\_‘-_\___ ~ _FFH__'_..-"
-5 - R VU W S N B
-20 0 -15  -10 5 k) 15 20

-5 0 3
Input MR (dB)

www.altarum.org




../~ . Robust Minimax Detection-Summary

+ Incorporates uncertainty in both statistical models and
unavoidable data anomalies

+ Useful in both estimation and final detection in a GLRT

— Estimation: power spectral density models, cultural discretes,
iInhomogeneities

— Detection: heavier tailed distributions than anticipated, target
uncertainties

« Gives up some performance in the ‘perfect’ scenario to guard
against real-world uncertainties

— Optimum detectors are non-robust to real-world uncertainties

+ Average performance of the robust detector over all the
uncertainties may be significantly better than the optimum
detector

+ Robust detectors allow the incorporation of some target
knowledge into the detector

www.altarum.org



Processing Architecture
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Proposed Tasks

*

Risk based formulation of spectral analysis techniques: Re-derive
STAP algorithms (e.g. post-Doppler STAP) using a minimum Risk formulation. Identify how the prior
information (maps, signatures, etc.) enter into the formulation. Analyze the performance of the minimum
risk STAP algorithm using the ISL derived data cube. Metrics of performance include SINR loss as a
function of speed, cross section, etc.

Small sample size robust strategies: incorporate sampling strategies such as

jackknifing, boosting, and cross validation for both classical STAP algorithms and minimum risk
formulations. These strategies will be compared to classic sampling strategies from the perspective of
statistical efficiency, bias and convergence to the Cramer-Rao bound.

Robust formulations: Explore the formulation of STAP algorithms based on fundamentally

robust formulations such as min/max, maximal invariance and exact robustness theory. These algorithms
will be studied for the scenario of applicability and their performance over a class of known and unknown
interferers.

Support for the architecture working group: we will support the working group

which is defining the overall KASSPER architecture to determine where and how any prior information is
being incorporated..
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