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PRESENTATION OUTLINE

● PROPOSED ACTIVITIES and SECOND YEAR RESULTS
❍ Knowledge-Aided Radar Moving Target Focusing

❍ Knowledge-Aided SAR Tree-Smear Reduction

❍ Knowledge-Aided Clutter Covariance Estimation for GMTI

● PLANS
❍ Continue Knowledge-Aided Clutter Covariance Estimation



MOVING TARGETS IN SAR

● Problem: In SAR, a moving target signature may be spread and displaced in azimuth. 
The target detection and target (source) location estimation are very challenging due to 
reduced TCR and the unknown displacement of target signature, respectively. Focusing 
(compression) of the target signature (for ID) without the knowledge of the target motion 
over the aperture may be very poor.

● Solution: Use the knowledge of the road network on which the moving target is 
hypothesized to be moving. This knowledge lets the motion induced phase distortion to 
be estimated.

● Knowledge Source:
Fairly accurate Road Network Information is needed.

GD-AIS
❍ Identified imagery with movers, and with available maps of the roads
❍ Detected movers hypothesized to move at a constant speed on the known roads
❍ Used the knowledge of the road to focus the signatures
❍ Made comparisons with the existing algorithms to assess performance



MOVING TARGETS IN SAR
Summary

● Knowledge-aided processing is employed to focus moving target smears in
❍ Select real SAR data
❍ Simple synthetic SAR imagery

● There are several algorithms to focus moving targets without any a priori
information such as Keystone Remapping and Advanced ISAR.

● Here, Keystone Remapping is the algorithm implemented for comparison 
with the knowledge-aided focusing.

● However, Operational differences between KASSPER processing, Keystone 
Remapping, and Advanced ISAR are highlighted. 

● Knowledge-aided processing is shown not to suffer from the scaling 
problem that Keystone mapping does. This is particularly important for 
ATR.



MOVING TARGETS IN SAR
Keystone Remapping Details

● MITRE Corp. developed an algorithm to image moving targets in SAR using 
Keystone Remapping. 

● Keystone Remapping is a processing Kernel that provides the ability to image 
targets with large range migration over the coherent integration time.

● Consider a SAR system that transmits a series of pulses

where typically p(t) is the chirp

● The received signal from N scatterers after down conversion is 

with Fourier

where t´ = (t - kT1) is the fast-time, tk = kT1 is the slow-time, and above is the Fourier 
Transform in the fast-time. 
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● The range Rn(tk) to scatterer n can be expanded in Taylor series about  tk = 0 and 
substituted  in the previous relationship to give 

where ϕn (tk) contains quadratic and higher order terms.

Algorithm steps to focus moving targets

1. The linear range migration of scatterers is represented by the coupling term    

which may be removed if the time axis is rescaled by 

2. The residual quadratic range migration errors is                
removed.
❍ Modified or average Dominant scattering methods

3. Then, the higher order defocusing terms are removed.
❍ Phase gradient method

MOVING TARGETS IN SAR
Keystone Remapping Details
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SAR image Video of moving M2 tank

○ X-band SAR.
○ 17.1875o grazing angle.
○ Slant range = 26500 ft.
○ Altitude = 3700 ft.
○ 200 m diameter dirt track.
○ Stationary BTR-80 at center.
○ M2 going CCW at 12 kph.

M2 has translational and rotational motion.
M2 aspect and elevation angles to radar were 
recorded at a 4 Hz rate in the aux data.

Fact: Moving targets appear as displaced azimuthal smears in SAR imagery.
Fact: Present algorithms, e.g. Keystone Mapping, focus target smears with incorrect scaling.

Diagram of Experiment
SAR

○ Range (horiz.)
○ Azimuth (vert.)
○ 1-ft resolution

mover 
smear

location 
on circle

MTFP Experiment (ams0104)
M2 Tank Driven in a Circle

Consider an experiment with a set of collected SAR imagery containing two targets:
● a target moving around a circular road
● a stationary target in the center
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A Keystone Remapping Example on MTFP

M2 mover smear for a sample 
location on the circle

17 locations around the circular path were examined. We chose one location on the circle 
with best focusing. (We conjecture that this case is one without smear effects due to out-
of-plane, un-modeled, rotational motion.)
The focused image is in the range-Doppler domain and needs to be properly scaled.
Correct scaling is not possible unless the total rotation of the target over the entire 
coherent integration time is known as well.

Keystone Image
Reference

Image of Stationary M2

Keystone Mapping

Scaling on the focused 
image is arbitrary



A Keystone Remapping Example on 
Synthetic Imagery

Truth
Ground Plane Slant Plane

Top 6.56 ft. (2m) 4.64 ft.
Sides 13.12 ft. (4m) 9.28 ft.
Bottom 8.53 ft. (2.6m) 6.03 ft.

Measured

Keystone
Top 4.24 ft.
Sides 5.73, 5.67 ft.
Bottom 5.48 ft.

Original Smear of 4 point
Targets moving on a circle

at constant speed

● A set of synthetic SAR images was generated with 4 point targets moving on a circle.
● The point targets were in a trapezoidal arrangement.
● Focusing of the resulting smears was exercised by the Keystone mapping.
● The resulting imagery have incorrect azimuthal scaling.

Focused image obtained 
by Keystone remapping
(No information about 

the road was used)

Keystone yields incorrect
scaling in azimuth.

Comparison between the true relative distances and the 
focused relative distances of the 4 point targets 



Now that there is an azimuthal scaling error with the Keystone 
Remapping Algorithm, a critical question is raised:

Question: How well does a priori knowledge of roads improve focusing of moving 
targets, and does the focused imagery have the correct scaling?

Answer: The focusing operation should improve (at-least theoretically) and the 
focused imagery would be in range-azimuth domain (i.e., with correct scaling).

KASSPER Question



KASSPER Processing for Focusing Moving 
Target Smear
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● Knowledge-aided processing to 
focus mover smear
1. Generate motion compensated phase 

history
2. Apply clutter reduction filter.
3. Chip out smear.
4. Estimate and remove bulk translational 

motion of the mover.
5. Estimate azimuth angle aspect to 

mover (in the slant plane) by using 
known sensor motion and known road 
information and estimated mover 
direction and motion.

6. Apply polar-to-rectangular formatting.
7. Form image with 2D-FFT.

● Knowledge-aided focusing algorithm uses the road information to 
estimate the slow-time rotation of the rigid-body (target) over the 
aperture.

● This estimation is performed in step 5 (see below) after some preliminary 
operations to chip out the smear and remove the translational motion 
(steps 1-4).

● This results in an ISAR-like setup, but with time-varying angular velocity.
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KASSPER PROCESSING
Equivalent ISAR Configuration

● With the removal of the translational motion, a 
coordinate system can be chosen at each 
pulse, such that the radar appears fixed, and 
the aspect angle of the sensor to the target is 
known.  This is equivalent to ISAR imaging, 
where the target is moving at an angular 
velocity ω(t) about an axis z perpendicular to the 
line of sight of the radar (see figure). 

● We may write

where if we represent the road knowledge by 
g(x,y,z,t)=0, then

● The Doppler frequency is found to be
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KASSPER PROCESSING
Polar to Rectangular Coordinates

● The received signal model after dechirp
is 

Where tn is slow time,    is fast time, fc is 
center frequency, γ is chirp rate,  Tp is 
pulse length, and r is a function of  tn.

● The polar format radius is:

● The polar angle is  ω(tn).
● After polar format transformation, the 

phase history becomes:

● Where Ka is the spatial sampling 
distance in azimuth, and Kr is the spatial 
sampling distance in range.

● The polar grid shows black dots where samples would 
be collected if ω(tn) the aspect angle, is linearly 
changing with pulse time.

● The clear dots show evenly-spaced interpolated points 
in range, which is the first step in generating a 
rectangular grid of points.

● The red lines show a case where ω(tn) is not a linear 
function of pulse time.

● It is still desirable to interpolate to the same clear dots 
as before, however, the input red samples must not 
violate Nyquist sampling (or else the output image 
resolution will be reduced).

● In fact, for 1 foot resolution at X-band, there must be 
~3 degrees of angle, and the number of range and 
azimuth samples in the inscribed rectangular output 
grid are given by:  nphr = Kr /ρr, and npha = Ka /ρa.  Too 
large a space between samples can affect the choice 
of the interpolation scheme and the sensitivity of the 
interpolation result to noise.
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Unevenly-spaced θ(tn) polar format data along red lines.
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• 17 looks around the circle
• The 12th look is best-focused

MTFP Experiment (Continued)
Knowledge-Aided Processed Chips

For this experiment, the knowledge is the 
geo–coordinates of the circular road



MTFP Experiment
Estimation of Bulk Translational Motion

Target Chip 
Signal 
History

Target Chip 
Signal 
History

FFT Range 
Compression

Range 
Compression

Centroid
calculation Ranges to 

centroids
Ranges to 
centroids

Fitted range 
polynomial

Fitted range 
polynomial

Least squares fit; 
order selection

Slowed signal 
history

Slowed signal 
history

Translation 
compensation

Pairwise cross-
correlationCross-

correlation 
functions

Cross-
correlation 
functions

Extract phases; 
Scale to ranges

Residual 
translation 
estimate

Residual 
translation 
estimate

+ Final translation 
estimate and its 

removal from the 
signal history.

Final translation 
estimate and its 

removal from the 
signal history.

Estimation and removal of bulk 
translational motion effects



MTFP Experiment
Estimation and Removal of Bulk Translational Motion

Mocomped &  
Filtered RC

Chipped & 
Translation  - removed 

RC

Pulses 

Pulses 

Range 

Range 

Chipped & 
Translation-removed 

Image

C
ross   -range 

Range 

Note:
Translational 

motion in 
Range

FFT
along 
trackor

Range migration



(Lat, Lon, Alt) of M2 Mover 

Start

The azimuth angle is determined from the SAR sensor position 
and the target direction and position on the ‘road’ (in red above).

MTFP Experiment
Focusing via polar-to-rectangular reformatting

Image with polar   -to -rectangular
formatting and 2    - d FFT

(grazing angle = 17.1875  o).
C

ross-range 

Range 

Chipped & 
Translation- removed 

Image

Double Click on the movie 
of a stationary M2 at scene 
center with the sensor in a 

circular flight around it 
(~300 degrees of look 

direction in the movie).
(grazing angle = 16.99 o)  

Measured track

Knowledge

With translational motion removed

• Estimate the aspect angle by using 
the road knowledge

• Interpolate the resulting polar VPH  
onto a rectangular grid

• Take 2-d FFT

A
zim

uth A
spect (deg.)

Azimuth Aspect Angles (12th case) 

Estimated Aspect Angle (deg)

Measured Aspect Angle (deg)

Pulse Number



A Knowledge-Aided Focusing Example 
the Synthetic Imagery

Truth
Ground Plane Slant Plane

Top 6.56 ft. (2m) 4.64 ft.
Sides 13.12 ft. (4m) 9.28 ft.
Bottom 8.53 ft. (2.6m) 6.03 ft.

Measured

Knowledge-aided
Top 4.75 ft.
Sides 9.75 ft.
Bottom 6.5 ft.

● A set of synthetic SAR images was generated with 4 point targets moving on a circle.
● The point targets were in a trapezoidal arrangement.
● Focusing of the resulting smears was exercised by Knowledge-aided focusing.
● No azimuthal scaling discrepancy is observed with this method.

Correct scaling in azimuth 
is achieved.

Original Smear of 4 point
Targets moving on a circle

at constant speed
Focused image obtained 

by Road-Knowledge-
aided focusing

Comparison between the true relative distances and the 
focused relative distances of the 4 point targets 



MTFP Experiment
KASSPER and Keystone side-by-side 

• The Keystone image looks a bit sharper for this exercise. 

Keystone ImageKnowledge-aided Image

Stationary Image of M2 (case 12)



The red and blue colors highlight the differences in the algorithms.

Comparison between Keystone, 
Advanced ISAR, and KASSPER

Keystone Processing
○ Generate motion compensated phase history.
○ Apply clutter reduction filter. (Might not have been done 

in original formulation.)
○ Chip out smear.
○ Apply keystone algorithm which performs a 1D polar-to-

partially rectangular formatting.
○ Apply autofocus algorithm to resulting rangewalk-

corrected smear.
○ Form image with 2D-FFT.
○ Scaling ambiguity in azimuth

KASSPER Processing
○Generate motion compensated phase history
○Apply clutter reduction filter.
○Chip out smear.
○Estimate and remove bulk translational motion of mover.
○Estimate azimuth angle aspect to mover (in the slant 

plane) by using known sensor motion and known road 
information and estimated mover direction and motion.

○Apply polar-to-rectangular formatting.
○ Form image with 2D-FFT.
○ Iterate over 17 locations around the circular path.
○Choose cases without smear effects due to out-of-plane, 

un-modeled, rotational motion.
○No scaling ambiguity in azimuth.

Advanced ISAR Processing
○ Generate motion compensated phase history
○ Clutter background is low, so no need to filter.
○ Chip out smear.
○ Estimate and remove bulk translational motion of mover 

using estimated mover motion and correlation pull-in.
○ Estimate azimuth angle aspect to mover by using known 

sensor motion and estimated mover motion.
○ Estimate rotational motion with focusing of clusters of 

point-like scatterers.
○ Apply polar-to-rectangular formatting, with out-of-plane 

data projected to the image plane.
○ Form image with 2D-FFT.
○ Scaling ambiguity in azimuth.

KASSPER Processing
○Generate motion compensated phase history
○Apply clutter reduction filter.
○Chip out smear.
○Estimate and remove bulk translational motion of mover.
○Estimate azimuth angle aspect to mover (in the slant 

plane) by using known sensor motion and known road 
information and estimated mover direction and motion.

○Apply polar-to-rectangular formatting.
○ Form image with 2D-FFT.
○ Iterate over 17 locations around the circular path.
○Choose cases without smear effects due to out-of-plane, 

un-modeled, rotational motion.
○No scaling ambiguity in azimuth.



● Target smear can be properly scaled and focused with a priori
knowledge of the road provided out-of-plane, un-modeled, rotational 
motion is minimal.

● Chances are improved with multiple looks at the target.

● The azimuth aspect angle must be sufficient for the desired 
resolution (3 degrees for 1 ft. resolution).

● The a priori knowledge can provide the necessary information for 
correcting the scaling issue with the Keystone Remapping.

MOVING TARGETS IN SAR
Conclusion



KNOWLEDGE-AIDED SAR 
TREE-SMEAR REDUCTION

❍ GD-AIS identified single aperture 
examples with significant effects of 
moving trees. 

❍ GD-AIS Extended and applied the 
prediction-based decomposition by using 
1-D and 2-D prediction filters over the 
open and treed areas identified by 
DFAD.

❍ The underlying smear is modeled as an 
added noise to predictable signals (point 
targets) in which the noise decorrelates
over the aperture.

● Problem: For long enough integration time, the streaks caused by blowing trees 
may obscure targets in the open and along treelines.

● Solutions:
❍ Prediction-based filtering using the knowledge of the treed areas

● Knowledge Source: DFAD



The underlying smear is modeled as an additive noise, added to predictable 
signals (point targets), that decorrelate over the aperture. That is, the signal 
history may be written as

where

The covariance function of n(k , f ) gets arbitrarily close to zero beyond K
pulses or beyond F frequencies, i.e.,

(In typical SAR, uniform clutter is usually assumed to be uncorrelated from pixel-to-pixel, hence 
frequency-to-frequency. Consequently, F = 1.)

TREE-SMEAR MODEL
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1. The 2-D Separable predictor is a two stage algorithm:
❍ First stage: Solve

where

❍ Second stage: Solve

where fs is the spatial frequency sampling interval.

2. The Minimum Variance Method (MVM) maximizes SIR for point targets by solving 

where r is the location of a point target, X is the rasterized vector of the 2-D signal 
history X(k , f ) , and W is the Kronecker product of 1-D Fourier transform vectors.

TREE-SMEAR REDUCTION ALGORITHMS
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KNOWLEDGE-AIDED SAR TREE-SMEAR 
REDUCTION - Original Image

Original

The knowledge of the treeline dictates 
where and how to process

Identical images Toggle back and
forth between this 

and the next viewgraph



Full MVM Image

KNOWLEDGE-AIDED SAR TREE-SMEAR 
REDUCTION - Predictive Decomposition

Separable 2-D AR Filtering (64th order model) 

● Contrary to the point scatterers, tree-smears tend to decorrelate over the aperture.
● Predictive algorithms can restore the predictable (i.e., point scatters) and mitigate the 

unpredictable (i.e., smears)

The know
ledge of the treeline dictates 

w
here and how

 to process

The know
ledge of the treeline dictates 

w
here and how

 to process



KNOWLEDGE-AIDED SAR TREE-SMEAR 
REDUCTION - Conclusion

● Two predictive methods were developed to reduce the smear caused by 
windblown trees.

● The separable 2-D prediction is quite effective in removing the smear 
while preserving some point scattering centers on target.

● The non-separable 2-D prediction (MVM) is quite effective in reducing 
the background clutter and preserving point-target signatures in the 
image.

● The DFAD provides the knowledge of the tree-line by which targets may 
be located and the moving trees smear may affect the most.



GMTI Change Detection

● Problem: Improve the clutter covariance estimate in STAP MTI  
❍ clutter is a non-stationary random process
❍ proper covariance estimation with a single CPI is an under-determined problem

● Solution:  Statistically infer the clutter covariance matrix at each range gate from 
previously collected single/multi-channel SAR/GMTI CPIs

● Knowledge Source: Previously collected SAR/GMTI data sets

● GD-AIS has recognized that by with multiple GMTI CPIs available, the problem of non-
stationary clutter covariance estimation is not ill-posed as it is with just one CPI.  Well-
known problems in clutter covariance estimation should be revisited with the new data 
set. This is the direction in which our effort is focused.



Signal Model for Covariance Estimation
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Maximum-Likelihood Structured Covariance 
Estimation

• We have made two changes to the signal model, which make estimation of the non-
stationary clutter covariance possible:
• A structure is imposed on the covariance matrix
• More than one snapshot is available

• Either of these constraints imposed separately are difficult to impose.  However a 
maximum-likelihood formulation is possible, although not in a closed form.  
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MLE Simulation

•One snapshot, each, from two 15-element ULAs.
•Two white, uncorrelated signal sources
• MUSIC spectrum computed using diagonally loaded 
sample covariance matrices

X

Y

Passive Array Simulation in Matlab
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● GD-AIS has considered the possibility of covariance estimation using a Bayesian 
paradigm

● The first term in the numerator is well-known, and it may be possible to compute the 
distribution by Monte Carlo methods if the second term were known:

● Generating covariance matrices according to this distribution is computationally intensive.

● This method has not produced satisfactory results to date 

Bayesian Covariance Estimation
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Knowledge-Aided Covariance Estimation 
Conclusions

● Clutter Covariance estimate is computed from clutter map that is
formed by considering multiple non-coherent synthetic apertures.  

● SAR processing won’t work with this signal model, so we use the 
E-M algorithm.

● Simulations with simple, passive array problems demonstrate the 
promise of this approach with a measured improvement in SINR 
loss.

● Bayesian estimators may have potential, but that has yet to be 
demonstrated



Future Work

● GD-AIS proposes to support KASSPER by continuing the initiated effort in the 
GMTI clutter covariance estimation.

● Continue MLE algorithm development:
❍ Look for ways to speed it up without sacrificing performance
❍ Analyze the effects of movers in training data
❍ Analyze the effects of array calibration errors

● Pursue Bayesian estimation possibilities

● Continue testing algorithm on KASSPER Data Set 2, and multichannel DCS data


