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Experimental Results -
KBMapSTAP

• Can STAP performance be improved by 
choosing secondary data based upon a priori 
map data?

• “Standard Algorithm” - choose secondary data 
plus & minus N/2 range rings of the test ring 
(omitting guard cells)
– Implicit assumption - Nearby range rings of the 

test ring are homogeneous and are 
representative of the test ring.

– Case I - Homogeneous Environment
– Case II - Heterogeneous Environment



Proposed Algorithm/Conjecture
• Post Doppler Element Space STAP 
• Basic Assumption - Major clutter 

competing with the target cell is due to the 
patch of earth within the same test ring 
that passes through the same Doppler 
filter

• Picking secondary range rings that have 
the “same” patch of earth and lie along the 
same Doppler curve as the test ring clutter 
patch, will provide better performance than 
the sliding window algorithm. 



MCARM Radar Registration 
With Map Data



Early Assessment
• Outperformed standard windowing approach within 

heterogeneous environments (up to 9 dB improvement)
• Performed the same as standard windowing approach 

within homogeneous environments
• However, there are issues with this approach

– Map data accuracy – data are not always current
– Digital elevation data needed in mountainous terrains–

shadowing effects
– Weather data is time dependent
– Time of year – e.g. snow covered terrain
– Registration and calibration errors must be assessed
– Variability in STAP results compared to sliding window

• Need to “see what the radar is seeing”
• Map data is necessary but not sufficient for filtering and 

detection– also need mapping data for tracking (e.g. 
roads and railroads)  



Further Investigation
• Went from 200 meter data to 30 meter data
• Results were not consistent
• Fine tuned and improved all our models including antenna 

gain pattern models
• Tried additional CPIs – Recognized target spread issues 

while investigating known targets, i.e. Moving Target 
Simulator (MTS)

• Performed analytical investigation of the impact of target 
spreading on algorithm

• Reworked algorithms accounting for “target” spread 
However, due to STAP secondary data independence 
requirement – ran out of a desirable number of samples 
when using all 22 radar elements with guard cells

• Reduced array to 11 elements thereby allowing for the 
use of guard cells around each of the chosen secondary 
range rings.



Results 
With and Without Guard Cells

Using
Sliding Window and

MapSTAP





























Variability in STAP Results
In estimating the covariance matrix, if one wishes to maintain an average 

loss, compared to the optimum, of better than one-half (less than 3 dB), 
at least 2N samples of data are needed. 

I. S. Reed, J. D. Mallet, and L. E. Brennan, “Rapid Convergence Rate in 
Adaptive Arrays,” IEEE Transactions on Aerospace and Electronic 
Systems, Vol. 10, No. 6, pp. 853-863, November, 1974.

• In order to demonstrate that knowledge-aided approaches improve STAP 
performance we need to use real radar data – i.e. for simulated radar data we 
cannot use the same knowledge sources that produced the simulated radar data.

• If we use real radar data we have no way of knowing what the true covariance 
matrices are and, therefore, a reliable performance metric is hard to obtain.

• We need to develop a statistical performance measure, when using real radar 
data, to evaluate STAP algorithms properly.  A couple of data points are not 
sufficient to prove that new approaches are better than current ones.

• However, a statistical performance measure would require a large collection of 
radar data with accurate truth information about embedded targets. – (addressing 
this issue with DEM data)



Developing Image Data

• Need to “see what the radar is seeing”
• Map data is not necessarily current
• Weather may be a factor
• May not have image data from other 

sensors









DEM Data Algorithm 
Development

• Chose a mountainous region
• A real radar with multiple CPIs
• Real truth data – more than MTS data
• Minimal variation in LULC data – not included in 

algorithm
• Preliminary algorithm is automated in MATLAB 

(based upon % shadowing and reflection angle 
statistics per range ring)

• Will be integrated into SPEAR facility with Black 
River Systems 



Scene with DEM, LULC and DLG Terrain Data



Scene with 10 Meter DEM Terrain Data in 
MATLAB



Chosen Range Bins on Flat Terrain

(Test Cell Red, Sample Cells Yellow)



Chosen Range Bins on Mountainous Terrain

(Test Cell Red, Sample Cells Yellow)



Shadowed Range Cells
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MCARM DATA
• L-Band Airborne Radar

– Twenty Two Channel Phased Array
– 20 KW peak power
– Low PRF ~ 1 KHz
– Moderate Bandwidth ~ 1 MHz 

• In Scene Calibration 
– Ground Based Active Radar Calibrator
– Airborne Test Targets
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Performance Measure
Modified Sample Matrix Inversion

MSMI  is computed for each range ring -
has a thresholding or detection quality, similar

to CFAR.



MSMI Output Using Sliding Window Algorithm 
With Injected Target At Range Bin 475 



MSMI Output Using KBMapSTAP Algorithm 
With Injected Target At Range Bin 475 



MSMI Output Using Sliding Window Algorithm 
With Injected Target At Range Bin 375



MSMI Output Using KBMapSTAP Algorithm 
With Injected Target At Range Bin 375 



MSMI Output Using Sliding Window Algorithm 
With Injected Target At Range Bin 296 



MSMI Output Using KBMapSTAP Algorithm 
With Injected Target At Range Bin 296 
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