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Background

 Airborne radar processing has typically focused on either

MTI or SAR modes determined by
MTI mode: aperr'E[ureH s_?mple ¢ SAR mode:
narrow bandwidth support, environmen wide bandwidth
short CPI / L long CPI
targets
close or in
targets outside mainbeam clutter the mainbeam SAR
STAP*, DPCA, conventional beam clutter
STAP*
. “targets in the training data is an issue .
moving __ stationary
targets decreasing target radial velocity targets

e Suggests that it may be advantageous to vary the CPI length
(and bandwidth?) as a function of the assumed radial
velocity

e This presentation addresses longer CPIs for detecting very ISI.

slow moving targets (e.g., GMTI radar)
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Objectives

Understand the theoretical advantages of long CPIs

Investigate ways to exploit the long CPI to improve STAP
performance

Begin to answer the fundamental question: what should we
do with all those pulses?

Generate along CPI covariance matrix and data samples for
use in analyzing the problem
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Outline

e Simulations
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simulated

ground clutter

area

(clutter patches ---

~6 m x 6 m)

Simulation Parameters

nominal subarray
pattern mainbeam

Parameters

Frequency X-band
Bandwidth 10 MHz

PRF 1 kHz

Pulses 512
Antenna 35mx0.3m

Subarrays 6 (50% overlap)

CNR 40 dB element/pulse

Simulated clutter
patches in the
mainbeam only

bald Earth, Gaussian
clutter

Look direction is
~17° off broadside

Platform
— speed: 125 m/s
— height: 11 km
— slant range: 38 km

Billingsley ICM (15
mph winds)

No scintillation
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Simulation Issues

True path range from pulse to pulseis required instead of
linear phase based on Doppler shift for a single platform
location

Must account for “range walk”

Computing the ideal covariance for 512 pulses and 6 spatial
channels is computationally and memory intensive

5 range bins were simulated
ldeal covariance was computed for the center range bin

IS1

KASSPER_MR/JSB — 03/03 - 7



Outline

« Ideal Covariance Analysis
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ldeal Covariance SINR loss

No ICM
l # pulses

o longer CPIs do 1| 32 « Post-Doppler
o not result in significant _ ?‘218 element space
z improvements in filter ] 256 P
2 response — 512 — 6 spatial
Z -20 - . :
7 more pulses and — 7 adjacent bins

251 constant Tx power will 1

‘ ‘ | | improve sensitivity — No Doppler taper
0 -15 -10 -5 0 5 10 15 ° Including more
Doppler (m/s) bins results in
IcM negligible
0 — 4 pulses iImprovement in

5} — 3 filter response
= —_ 32
S -10f 62 | * Results shown for
x® — 128 different CPI
(% =15 256 | h
- — 512 engths
Z -20f
(99}

_25_

-30 i i i

-20

-15 -10 -5 0 5 10 15
Doppler (m/s)
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ldeal Covariance Relative SINR

no ICM # pulses
20 T T T T T — 3
o) —
) — 64
g 107 1l—128| * SINRre. the 8 pulse
5 — o case is shown
z Of
@ e Assumes Tx power
o 10} i IS constant
Z
K « Post-Doppler
% “15 “10 5 0 10 15 element space
Doppl / .
oppier () — 6 spatial
ICM # pulses . .
20 . . . . . — — 7 adjacent bins
g —a — No Doppler taper
- 10F q| — 128 .
2 256 e Improvement gains
" of == in MDV falls off
o with Increasing
% -10f - numbers of pulses
n
-20 :
=20 -15 -10 -5 0 10 15
Doppler (m/s)
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MDV (m/s)

Minimum Detectable Velocity (MDV)

0 100 200 300 400 500
number of pusles

For this analysis MDV is
defined as the radial
velocity where SINR is -5
dB relative to optimal for 8
pulse case

Results assume that in a
noise limited environment
a target is detectable with
~5 dB margin with an 8
pulse CPI

This MDV calculation is
optimistic since it does
not include:

— heterogeneous clutter
— sample effects

lllustrates that _

Improvements to optimal
MDYV for CPIs longer than
~150 ms are minimal ISI.
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(dB)

(0]

SINR/SNR

|
N
o

-25

-30

-20 -15 -10 -5 0 5 10 15

ldeal Covariance Results
“Targets in the Training Data”

# pulses

Longer CPIs will
help mitigate the
problem of targets
in the training data

@@@@@@@@@@@@@ A

Doppler (m/s)

 Post-Doppler element space (5 bins)
» |deal target covariance added to the ideal clutter covariance

« Target SNR is 0 dB (pre-integration)

32
128
256
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Outline

« Adaptive Processing Techniques
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Adaptive Processing

Previous results were for ideal covariance processing
Ideal covariance is optimistic in real-world where
covariance must be estimated.:

— Heterogeneous clutter

— Mainbeam clutter nulling
More samples will generally improve the mainbeam clutter

nulling problem

More samples usually require larger training regions which
may not be desirable if clutter is heterogeneous

Do longer CPIs address this trade-off?

ISL
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Adaptive Algorithm: Approach #1

H><
I\)><
L X

element

pulse

X=[X,0) X,C) ... X.0)]
R = L xxt
K

NOTE: graphic shows only a single range bin

Break the long CPI
Into sub-CPlIs for use
In training

Possibly apply the
weights to each sub-
CPI and coherently or
Incoherently average
(area for future work)

Training data versus
range may also be
included in the usual
way

May still want to
remove test bin from
the training set
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Adaptive Algorithm: Approach #2

cell under test training cells o

/

Each plane is a SAR image
(range-Doppler map) formed
from the output of a single
antenna (note: it is complex)

The cell under test is
processed with a spatial filter:

= R By
Where R |s computed using
the spatlal vectors from

surrounding cells in both
range and cross-range

Detection statistic:
— Calibrated array

2
_ |y, H
=[vix,|

antenna # 1 7/ 7 °
y Z ? Z
antenna#zj/ L Z A -
/ // // //7// *
antenna#3 :
:W X (NXl)
: °
"
ii /7 /7 /
antenna # N L 7 7 7 7 7
range
1. Thisis Ali Yegulalp’s technique.

2. Multiple cross-range bins can be used (multi-bin post-
Doppler) and multiple range bins (fast time-taps)

3. Training in cross-range is possible because of high
resolution re. spatial resolution of physical aperture (see
next slide)

— Uncalibrated array

__uH
y_XWXW
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Spatial Covariance Training Using
Adjacent Cross-range (Doppler) Bins

e Graphic illustrates
why training using
data from adjacent
Doppler bins is
possible

« Takes advantage
of high Doppler
resolution re.
angular resolution
of physical

)/\/ aperture

 Longer CPIresults

yd
/ Doppler In more samples

Physical aperture
Main beam

angle

\\

Clutter spatial responses
in these Doppler bins
will be approximately

linearly dependent ISI_
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Sub-CPI Training

training set: single range bin

# pulses
0 - | l ] o — 3
: — 16
—r o S o ‘ ‘ — 32
%—10 B L R BN R f\
o g ] N ] ]
o . - | |
Z -15 N\ - | |
(2 C . | |
Z o0l L S /P . o 1 number of
n L ‘ ‘ pulses in the
S T (R ‘ ‘ sub-CPI
-30 ‘ ‘ ' '
-20 -15 -10 -5 0 5 10 15

Doppler (m/s)

3 bin post-Doppler element space (0 dB diagonal loading)
e Training over sub-cpis in a single range bin
« Number of samples:

512  total # pulses
M  #pulsesinsub-CPI lSl_

KASSPER_MR/JSB — 03/03 - 18




(dB)

(0]

SINR/SNR

|
=
Ul

|
N
o

|
N
ol

|
w
o

|
N
o

|
(63}

|
H
o

Sub-CPI Training

training set: 5 range bins

-5 0 5 10 15
Doppler (m/s)

3 bin post-Doppler element space (0 dB diagonal loading)
Training over sub-cpis in 5range bins
Number of samples:

total # pulses
# pulsesin sub - CPI lS'l
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(dB)

SINR/SNR

(0]

Range-only Training
training set: 5 range bins

# pulses
................... : T T [—8
...................................... : _16
; w32

| |

-5 0

Doppler (m/s)

3 bin post-Doppler element space (0 dB diagonal loading)

5range bins used for training (i.e., 5 samples)

This result is shown for comparison purposes IS'_
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Post-Doppler Processing
ldeal Covariance

3 adaptive bins, overlap training « Demonstrates the effect
— | — of using adjacent
Doppler bins for training

« Beamformer computed
s USINQ average of ideal
— 1 covariances from the

- 11

— 21 adjacent Doppler bins

— 41
30— — ol—— —  Overlapping and non-
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15 . ..
Doppler (m/s) Doppler (m/s) Overlapplng tra|n|ng
3 adaptive bins, non-overlap training cases ShOWI’] for the
' ' ' ' ' ' “Angular” resolution in Doppler: multi-bin (multi-pixel)
5 = A M processing case
4= =
2Ly 2v M  Performance degrades
#Dop. training bins - Antenna angular resolution: for large window
5 5, =\/L e All results are for 256
— 21 a —
ulse CPI (f .. =18.7
— 4 Resolution ratio: P _ ( res )
O o0 5 o0 5 10 15 5 2vM « 1 adaptive bin result
Doppler (m/s) w2 =P uses 65 dB Cheb.
o,  Lf Doppler taper ISI_

1 adaptive bin

(dB)

(o]

# Dop. training bins
—_—
—_— 11
— 21
—_— 4]

# Dop. training

SINR/SNR

~
=
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(dB)

0]

SINR/SNR

(dB)

(]

SINR/SNR

Post-Doppler Processing
Sample Covariance

1 adaptive bin

My { == ideal
L anta v g | == 5 ranges
range-only | i | — 7 1200°
training | I

-15 -10 -5 0 5 10 15
Doppler (m/s)

3 adaptive bins, non—overlap training

— ideal
.| == 5 ranges
- 1 range

-15 -10 -5 0 5 10 15
Doppler (m/s)

(dB)

o

SINR/SNR

3 adaptive bins, overlap training

- 5 ranges

- 1 range

-15 -10 -5 0 5 10 15
Doppler (m/s)

Sample covariance
computed using adjacent
Doppler and range bins

21 adjacent Doppler bins
used for training

0 dB diagonal loading
All results are for 512 pulse
CPI (f... =37.4)

res
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Outline

e Summary
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Summary

Concept of varying the CPI length (and bandwidth?) may
offer a technique for tracking targets over a continuum of
radial velocities: moving -> stationary

Longer CPIs combined with traditional GMTI processing
techniques do not lead to significant improvements in
optimal MDV

Longer CPIs may help reduce the problem of targets in the
training data

Two techniques that exploit longer CPIs to improve the
performance of adaptive processing algorithms by
Increasing sample support without increasing physical
dimensions of the training regions were explored

Longer CPIs may allow the adaptive techniques to more
closely approach optimal performance

Future work will include: testing the algorithms using site-
specific data sets and exploring other algorithms for
detecting very slow moving targets ISI.
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