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CONTEXTCONTEXT



CONTEXTCONTEXT

• Airborne multisensor pulse-Doppler surveillance radar

• Arbitrary flight path around region of interest

• Ground subdivided into pixels or ground patches

• Known range, and angle of each patch with respect to 
platform

• Known illumination pattern

Objective: Determine ground scattering functionObjective: Determine ground scattering function



APPROACHAPPROACH

• Physical modeling: constant-γ (Lambertian) scattering 
model (Barton, Skolnik, others)

• Data modeling: structured covariance
– Received data modeled as 0-mean complex 

Gaussian vectors whose covariances are linear 
transformations of the scattering function Γ

• Maximum-likelihood methodology is used to estimate 
the unknown scattering function
– Expectation-Maximization (EM) algorithm used to 

compute maximum-likelihood estimate



PROBLEM FORMULATIONPROBLEM FORMULATION

• Region pixelized into N ground patches
– Size of patch commensurate with radar’s resolution

• Pulse waveform transmitted at instances k=1, 2, …, K, 
with known illumination pattern

• Received data across the M sensors and L range gates:

where
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• Rk is block diagonal; each block corresponds to one 
range gate

• Compact notation

where
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• Model for received data

• Goal:

MAXIMUM LIKELIHOOD ESTIMATIONMAXIMUM LIKELIHOOD ESTIMATION
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• Complete-data sufficient statistic:

EM ALGORITHMEM ALGORITHM
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• At each iteration, compute conditional expectation of 
complete-data sufficient statistics:

EM ALGORITHMEM ALGORITHM
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IMPLEMENTATION NOTES (1)IMPLEMENTATION NOTES (1)

• Assume pulse compression partitions pixels into distinct range gates.  
Association of pixels with range gates changes is view-dependent.

• Ordered subsets (OS) [H. Hudson, R. Larkin] to accelerate 
convergence of EM algorithm. 
– Group incomplete data in disjoints subsets
– Number of these sets is called OS levels
– Apply standard EM algorithm for each subset at a time
– Estimation of one subset used as starting point of other subset

• Land-use aggregation to improve the quality of the estimates
– Average the estimated values of the scattering function that have 

the same land–use type. 



IMPLEMENTATION NOTES (2)IMPLEMENTATION NOTES (2)

• Central operation is computation of conditional mean and 
covariance of ukl, given data zkl and current iterate Γ, 
according to model

where l is the range gate index.

• The matricesAkl can be wide or long, full-rank or rank-
deficient.  

• Stable implementations based on the SVD ofA(ΛΓ)1/2 

developed.

klklklkl nuAz +=
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MEDIUMMEDIUM--SCALESCALE SIMULATIONSIMULATION
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MEDIUMMEDIUM--SCALESCALE SIMULATIONSIMULATION
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Radar Parameters

• Sensors: 12
• Pulses: 10
• Range gates: 100
• Frequency: 10 GHz
• Bandwidth: 10 MHz
• PRF: 2 kHz



SIMULATION SIMULATION RESULTSRESULTS –– W/O LAND USEW/O LAND USE



LANDLAND--USE AGGREGATIONUSE AGGREGATION

• In many geographical information systems, ground 
patches are labeled with land-use values

• Assume all pixels with the same land-use label L have 
the same scattering function gL

• Greatly reduces the number of free parameters in the 
imaging problem



SIMULATIONSIMULATION RESULTS RESULTS –– W/ LAND USEW/ LAND USE
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FULLFULL--SCALESCALE SIMULATIONSIMULATION

• Region of Interest

• Lake of the Ozarks

• 15 km diameter

• 197,316 pixels

• 30m resolution



GEOGRAPHICALGEOGRAPHICAL DATASETSDATASETS

• Obtained from USGS Seamless Data Server
– 30m resolution

• Digital Elevation Model
– Used for modeling geometry

• Land Use
– Scattering function based on 21 classes of land cover

• 9 primary classes
– Water, Developed, Barren, Forested Upland, Shrubland, Non-Natural 

Woody, Herbaceous Upland Natural/Semi-natural Vegetation, Herbaceous 
Planted/Cultivated, Wetlands

• Each class contains one or more categories, e.g.
– Open Water, High-Intensity Residential, Deciduous Forest, Row Crops

– Scattering function chosen arbitrarily for simulation



SIMULATION PARAMETERSSIMULATION PARAMETERS

• Platform

– Flies in circular path 
around region

– Radius 25 km

– Altitude 7 km

– 8 different viewpoints

• Radar

– fc : 10 GHz 

– BW: 10 MHz 

– PRF: 2 KHz

– Pulses per CPI: 38

– ULA elements: 12

– Range gates: 990



DATACUBEDATACUBE GENERATIONGENERATION

• Simulation model

• Incident energy incorporates range and projected area of patch
• Patches hidden from radar are removed using Z-Buffer algorithm

– Patches sorted by distance from radar
– Any patch facing backwards or directly behind another is removed

• Response at a single range gate is sum over all patches in range gate

Diagonal illumination 
matrix for kth pulse

Scattering function

Columns are Kronecker product of spatial and 
Doppler response vectors
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ILLUMINATIONILLUMINATION

Illumination from different looks
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BASIC RADAR IMAGINGBASIC RADAR IMAGING

Why does SAR imaging work in the first place?

• We assume there exist fast orthogonal transforms that take     
data into uncorrelated components in radar-centered (range, cross-
range) image space.

Range: matched filtering or 
pulse compression, 
implemented with FFT

Cross-Range: Doppler 
processing, or spectrum 
estimation via FFT

Imagera
ng

e

cross-range



COMPUTATIONAL COMPLEXITY OF SARCOMPUTATIONAL COMPLEXITY OF SAR

N x N desired image
N range bins, N pulses in CPI

Range processing:     N ( Nlog2N ) flops
Doppler processing:   N ( Nlog2N ) flops

Total computational complexity  O(N2log2N)
Same as 2-D FFT



OUR  COMPUTATIONAL  COMPLEXITYOUR  COMPUTATIONAL  COMPLEXITY

• Terrain relief
• Multiple viewpoints
• Illumination patterns
• Earth-centered coordinates

All mathematical structure leading to the FFT is destroyed 



SAR MODELSAR MODEL

• z:  data vector

• u:  underlying random vector, indexed by radar
coordinates

• Model:       z = Au + n

• Inversion:  u = A-1z (fast, and only once)

• Resulting image – squared magnitude of u components



OUR MODELOUR MODEL

• zk:  data vector    (k = viewpoint index)

• uk:  underlying random vectors, indexed by Earth
coordinates

• Model:       zk = Ak Lkuk + nk ,         k = 1 … K
uk ~ CN(0,Γ)

• Different Ak
• Ak not invertible, not square, full
• No nice mathematical structure



OUR MODELOUR MODEL

EM Algorithm: at each step, compute the conditional
mean and covariance of uk given zk and the current
iterate Γ(p).

Rough numbers: for N pixels in each direction, and
partitioning of  data across ranges, this requires solution
of N NxN systems for each iteration and each viewpoint.

N4 does not compare very well with N2log2N !!N4 does not compare very well with N2log2N !!



OUR MODELOUR MODEL

For our full-scale simulation N ~ 500

• For each EM iteration and each viewpoint, we
were solving  500 500x500 linear systems for
each iteration (on average). 

• No surprise: even with 2 sec per system, we
were using 20 minutes on 2GHz Dell PC
running MATLAB, per iteration, per viewpoint.



ONE PIECE OF GOOD NEWSONE PIECE OF GOOD NEWS

EM Algorithm parallelizes nicely across data cubes

Data cube
processor

Central
processor

Data cube
processor

Data cube
processor

Data cube
processor

One data cube processor
requires one data cube and
one set of model matrices
(viewpoint data)

Reported  at the 2004
HPEC Workshop, MIT
Lincoln Laboratory
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SOLUTION: CROSSSOLUTION: CROSS--RANGE QUANTIZATIONRANGE QUANTIZATION

• Problem in radar coordinates (range, angle, Doppler) has a lot of 
mathematical structure

• We were already quantizing in range: after range processing (matched 
filtering) contribution of each pixel assumed to belong to only one range 
bin.

• Extend this idea to angle and Doppler, i.e., cross-range.

• Pre-process data using FFTs (2-D FFT since both angle and Doppler 
contribute cross-range information)

• Then make key assumption:

Each ground patch contributes to only one range/angle/Doppler bin



ASIDE: SPACEASIDE: SPACE--TIME METHODS FOR RADAR IMAGING?TIME METHODS FOR RADAR IMAGING?

• In traditional radar processing (1 sensor), # pulses in CPI = # cross-
range pixels.  Could be Doppler-ambiguous.  If PRF is high, data is 
range-ambiguous.

• With space-time data, suppose there are Ms sensors and Md pulses in 
one-CPI data cube.  Up to M = MsMd cross-range pixels.

• Could lower PRF and eliminate range ambiguities, and at the same
time use multiple sensors to resolve Doppler ambiguities.  Every cross-
range index has a unique vs x vd signature vector.

This idea needs a lot more exploration!This idea needs a lot more exploration!



WHAT DOES QUANTIZATION BUY US?WHAT DOES QUANTIZATION BUY US?

• New problem, after coordinate transformation 
and quantization:
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• Define:
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WHAT DOES QUANTIZATION BUY US?WHAT DOES QUANTIZATION BUY US?

• Log-likelihood, the gradient of the log-likelihood
and basic EM step are easily computed for this
new model 

• Resulting computational complexity is linear in
the number of pixels!

• Improvement on the order of N2

• Example: N=500, improvement factor 250,000



CONCLUSIONSCONCLUSIONS

• Presented problem of radar imaging from multiple viewpoints and 
multiple noncoherent data sets as a maximum-likelihood structured 
covariance estimation problem

• Derived and implemented EM Algorithm

• Included stable SVD methods, ordered-subset (OS) algorithm, parallel 
implementation, land-use aggregration

• Proof-of-concept through medium-scale simulation

• Computational complexity of full-scale simulation unmanageable

• Solution: quantization of every ground patch in range, angle, and 
Doppler.  Orders of magnitude reduction in computational complexity.

• Space-time methods for radar imaging is a topic that needs to be 
explored independently.


