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For which does THz offer best 
new capabilities?
Which would develop the key 
technology pieces common to 
most other applications?

THz ApplicationsTHz Applications
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Remote Imaging 
Across the Spectrum

Remote Imaging 
Across the Spectrum

IRTHzMMW

Danger: Don’t Trust This 
Attenuation Chart!

Danger: Don’t Trust This 
Attenuation Chart!
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THz Remote Imaging
or

Just How Far Can You Go?

THz Remote Imaging
or

Just How Far Can You Go?
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A THz Atlas: The 6 B’sA THz Atlas: The 6 B’s
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THz ImagingTHz Imaging
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THz Imaging: Why Bother?THz Imaging: Why Bother?

“IR-Blind” Environments Restricted Apertures

Greater range Smaller aperture

Are there applications for which aperture and range requirements
can be simultaneously satisfied only at THz frequencies?

Are there applications for which aperture and range requirements
can be simultaneously satisfied only at THz frequencies?
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Aircraft Terrain AvoidanceAircraft Terrain Avoidance
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Only SWIFT frequency achieves 
range & aperture requirements in 

all-weather conditions 

Required 
Performance 

Range

• Image terrain and other potential obstacles 
through all-weather conditions

Notional Requirements
• Aperture < platform radome (~0.2m)
• Range up to at least 0.5km
• Resolution = 2m at range
• Good image quality (SNR ≥ 8)
• Frame rate (30 Hz) set by pilot reaction time

500m
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Architecting a THz Imaging System Architecting a THz Imaging System 
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Which System Architecture(s) Can Provide 
Adequate THz Imaging Performance?

Which System Architecture(s) Can Provide 
Adequate THz Imaging Performance?
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Other important system architectural 
considerations include:

• Scanning vs. staring array
• Pulsed vs. CW source
• Flood vs. line illumination

Other important system architectural 
considerations include:

• Scanning vs. staring array
• Pulsed vs. CW source
• Flood vs. line illumination
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Parametric Model of Various 
THz System Architectures

Parametric Model of Various 
THz System Architectures
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• Model based on NVESD IR system model
• THz phenomenology measured in TIFT Phase I

– Atmospheric absorption
– Materials transmission
– Spectral reflectance

• Task difficulty follows NVESD IR image analytic 
techniques

– THz model calibrated with sample of THz 
images and trained image analysts
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Measured THz Transmission 
Through Clothing

Measured THz Transmission 
Through Clothing

Metallic Cap Gun on Optical Table
0.640 THz Image

Gun Under Thick RobeThick Robe
0.640 THz Image
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Measured THz Transmission 
Through Clothing

Measured THz Transmission 
Through Clothing
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Measured THz Transmission 
Through Building Materials

Measured THz Transmission 
Through Building Materials
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Extension of Standard NVESD 
Perception Model to THz

Extension of Standard NVESD 
Perception Model to THz
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• IR image analysts trained to interpret THz imagery
• Library of THz images (see left) presented to analysts with 

varying amounts of gaussian blur applied
• Task difficulty determined by level of blur at which 50% of 

analysts made correct identification of objects
• THz task difficulty not worse than task difficulty for IR imagery
• Confusion matrix (see below) shows few systematic 

misidentifications among objects in image library
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Task Difficulty for THz Weapon 
Identification

Task Difficulty for THz Weapon 
Identification

THz

LWIR

Metal Pipe 
Bomb

Pack of 
Cigarettes

Lighter Screwdriver

Sunglasses Rock

Pistol Knife

Cell Phone Commun-
ications
Radio

Wallet Block of 
Explosive 
(Plumber’s 
Putty)

THz weapon ID more difficult than LWIR weapon ID. Easier than 
LWIR tracked vehicle ID.
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• Comm radio
• Rock
• Screwdriver
• Wallet
• Pistol
• Cell phone
• Cigarette pack
• Sunglasses
• Knife
• Lighter
• Metal pipe bomb
• C4 explosive

THz Imaging System ModelTHz Imaging System Model

The model accounts for:
• Focal plane array (FPA) and single-

detector scanned systems 
• Active target illumination & passive self 

emission
• Target obscurants, e.g., clothing material, 

in the propagation path (attenuation)
• Atmospheric effects: constant & band-

integrated attenuation
• Target reflectivity/emissivity

characteristics: target orientation
• Display characteristics
• Heterodyne & direct-detection-based 

systems

Model Outputs
• System MTF curves
• Eye & CTF curves
• Target contrast curves
• Atmospheric attenuation curves
• Probability of ID curves

– With no noise or attenuation(s)
– With noise
– With noise & atmospheric attenuation
– With noise, atm., & obsc. attenuation
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from TIFT Phase Ia (>557GHz)
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Passive is not a viable for THz imaging Passive is not a viable for THz imaging 

• Active coherent heterodyne architecture
• 10 mW illumination
• 14 dB noise figure

Near-diffraction limit, video-rate 
THz imaging is achievable 

Near-diffraction limit, video-rate 
THz imaging is achievable 
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Transmit / receive must satisfy challenging new 
bandwidth and dynamic range requirements

Transmit / receive must satisfy challenging new 
bandwidth and dynamic range requirements

Total illumination power requirements set 
by field of regard, not by range

Total illumination power requirements set 
by field of regard, not by range

Need for wide modulation
Need for high SFDR

• Active incoherent heterodyne
• 10 mW illumination
• 14 dB noise figure

0.65 THz
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Simulated Range to Identify for THz Imagers
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Power Requirements Driven by 
Field of Regard, Not Range

Power Requirements Driven by 
Field of Regard, Not Range

Active direct detection, line illuminated
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Interference Effects Can Be Eliminated 
With 15 GHz Source Bandwidth

Interference Effects Can Be Eliminated 
With 15 GHz Source Bandwidth

Narrowband 650 MHz Bandwidth Visible Image (no interference)

Bandwidth required to remove interference from 
waves reflecting from surfaces at a difference in 
distance of h away from the imager: 
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Large Dynamic Range Needed 
to Separate Signal from Backgrounds

Large Dynamic Range Needed 
to Separate Signal from Backgrounds

Image of gun at 650 GHz Image of face at 650 GHz

Typical THz Signal Object

Log detector response

Similar scales

Typical THz Background Texture

Detector response (dB)
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Receiver Needs 80 dB 
of Dynamic Range

Receiver Needs 80 dB 
of Dynamic Range

Linear processing Log post process Log IF process

Logarithmic processing improves quality of active images

Assumptions:

• RCS range (max:min) : 40 dB
• Minimum acceptable SNR: 6:1
• Minimum range to target: 5 m

Max. Receiver Dynamic Range Needed
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Simulated Range to Identify for THz Imagers
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Scanning Arrays May Provide Better 
Performance Than Staring Arrays

Scanning Arrays May Provide Better 
Performance Than Staring Arrays

Line scanning systems reduce electro-mechanical requirements 
and allow for array calibration/stabilization

Linear (scanning) array2D (staring) array



30Approved for Public Release, Distribution Unlimited

DARPA THz Imaging ProgramsDARPA THz Imaging Programs
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Sub-millimeter Wave Imaging 
Focal-plane Technology (SWIFT)

Sub-millimeter Wave Imaging 
Focal-plane Technology (SWIFT)

Approved for Public Release, Distribution Unlimited 



33Approved for Public Release, Distribution Unlimited

λ/2

Focal Plane

(1x128 pixels)

SWIFT Objective and ImpactSWIFT Objective and Impact

Concealed Weapons 
Detection at Range

Goal
• Demonstrate high-performance 

transmit/receive sub-aperture to 
enable diffraction-limited and video-
rate sub-MMW (340 GHz) imaging

Impact
• Push the limits of RF electronics
• Enable imaging in environments 

where no other sensor can function

All-Weather 
Terrain Avoidance

Radome-limited 
aperture

Range ~ 100mAll-Weather Look-Down ISR

Scan angles > 60°
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SWIFT Technical ChallengesSWIFT Technical Challenges

SOA PA MMICs
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SWIFT Program MetricsSWIFT Program Metrics

Phase I Phase II

Metric* Unit Today Mid-term MMIC 
Demo MMIC GNG Sub-Aperture 

GNG

PA PAE % None 2.5 5

Frame rate Hz N/A 30
Receiver LO power mW N/A < 500

RF bandwidth % None ≥ 5 ≥ 5
Receiver NF dB None** 12 8

PA Pout mW None** 5 50

Phase noise ‡ dBc/Hz None -38 -38
Transmit power mW N/A 1000

Sub-array receiver NF dB N/A 8
Level of integration pixels N/A 128

* At 340GHz 
** Best reported value for hybrid PA power/LNA NF at 340 GHz are 0.1 mW and 12 dB, respectively
† Azimuthal (height) x cross-track (width)
‡ Value to be measured at fc = 340GHz at offset frequency of 100Hz

Revised 28Apr2005
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Towards a THz TransistorTowards a THz Transistor

SWIFT (UCSB)

SWIFT (UIUC)
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SWIFT Accomplishments
World’s Fastest MMICs

SWIFT Accomplishments
World’s Fastest MMICs
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35nm InP HEMT Devices35nm InP HEMT Devices
MAG@340 GHz > 6 dB for both model & measured results

measured (de-embedded)
SWIFT model goal
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What Does an s-MMIC Look Like?What Does an s-MMIC Look Like?

Compact.
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InGaSb/InAlAsSb PN Diodes
• Excellent ideality factor, η = 1.0
• Relatively low reverse-bias leakage at low voltage
• Extracted series resistance of 1 Ω for a 5 µm 

diameter diode
• Cut-off frequency from S-parameter extracted RC is 

1.5 - 9 THz (best fit results in 6.5 THz)

Sb-Based Diode

η = 1.0

136 GHz 
PA

SHM
340 GHz 
LNA

Receive MMIC (Planned)
Performance
•7-dB NF
•5% BW

340 GHz 
LNA

340 GHz 
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68 GHz 
Driver
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Sub-MMW Metrology:
Another DARPA-Hard Challenge

Sub-MMW Metrology:
Another DARPA-Hard Challenge

Things that don’t exist at 340 GHz…
• Isolators

– Impedance control for power and noise measurements
• Rotary vane attenuators

– Calibrated loss
• Low loss couplers

– In-situ power calibrations
• Low loss probes

– De-embedding noise measurements
• Power amplifiers

– Input power margin in power measurement
• Impedance tuners

– Noise/load pull measurement

2nd Harmonic
Mixer

DUT

WR-3 
Feed 
Horn WR-3 Wafer Probes

Gunn Oscillator-
135 GHz

DC-500 
MHz Filter

1-1000 MHz
Amplifier Power

Detector

330 GHz Noise Figure Test Set330 GHz Noise Figure Test Set
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World’s Fastest TransistorWorld’s Fastest Transistor
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Vertical Scaling 
From 180 GHz to 765 GHz

Vertical Scaling 
From 180 GHz to 765 GHz

Early results:
• ft = 180 GHz 

fmax = 340 GHz
• BVCEO 5.1 V
• JC = 2.50 mA/μm2

Current results:
•ft = 765 GHz
fmax = 227 GHz

•BVCEO 1.65 V
•JC = 18.7 mA/μm2

τB = 90% ↓
τC = 80% ↓

CBC = 400% ↑
JC = 750% ↑

600 Å

2500 Å

125 125 ÅÅ
GradedGraded

550 Å

Emitter CapEmitter Cap

InP EmitterInP Emitter

BaseBase

CollectorCollector

SubcollectorSubcollector
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250 nm InP HBT Scaling250 nm InP HBT Scaling

emitter 500 250 125 63 nm width
16 9 4 2.5 Ω⋅μm2 contact ρ

base 300 150 75 70 nm width, 
20 10 5 5 Ω⋅μm2 contact ρ

collector 150 100 75 53 nm thick, 
5 10 20 35  mA/μm2 current density
5 3.5 3 2.5 V,breakdown

fτ 400 500 700 1000 GHz
fmax 500 700 1000 1500 GHz
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Terahertz Imaging 
Focal-plane Technology (TIFT)

Terahertz Imaging 
Focal-plane Technology (TIFT)

Approved for Public Release, Distribution Unlimited 
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Terahertz Imaging Focal-Plane 
Technology (TIFT)

Terahertz Imaging Focal-Plane 
Technology (TIFT)

Program Objective: 
• Achieve revolutionary advances in THz 

transmit and receive technology
• Develop building blocks to enable compact 

THz (>557 GHz) sensor arrays for diffraction-
limited, video-rate imaging

DoD Benefits
• Spectral dominance: will enable exploitation of 

currently inaccessible region of EM spectrum
• Will develop key components needed for THz 

systems (sensing, secure communications, 
and spectroscopy)

• Concealed weapons detection (CWD) 

Concealed Weapons Detection at Moderate RangeConcealed Weapons Detection at Moderate RangeTHz Sources and THz ReceiversTHz Sources and THz Receivers

Range

Dfield

Dfield

dres

THz Source

THz 
Focal 
Plane 
Array
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TIFT Program PlanTIFT Program Plan

BAA04-07

Phase IA

Today
Future BAA

Phase IB

Phase II

THz Component Development THz Component Development 

Advanced Advanced 
Component DevComponent Dev

THz Active Imager ArrayTHz Active Imager Array

Phase I Objectives
• 10mW, efficient THz source
• Low noise, array-integrable detector Phase II Objectives

• 1% efficient source
• 16-element receiver array

Objective Demonstration
• Diffraction limited, video 

rate active THz imager
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Key Technical Challenges 
for Phase IB

Key Technical Challenges 
for Phase IB

Sources
• Increase available sub-MMW power by 100X 

(10 – 100 mW)
• Achieve 20X increase in efficiency (1%)

Phenomenology
• Define FPA requirements for TIFT imaging 

through IR-blind conditions

Detectors
• Implement an array-integrable approach achieving 

at least 100X improvement in NEP’ (1x10-12 W/√Hz)
• 16 element array

Micromachined Vacuum Electronics

NVESD

Cascaded OPO

Stanford

Photonic Downcoversion

ErAs Diodes

UC
Santa 

Barbara

Direct Detectors

THz transmission through 
materials/Atmosphere

Regenerative Amplifier

Northrop Grumman

Spectral Features of 
Condensed Matter
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Phase I Program AccomplishmentsPhase I Program Accomplishments

THz Source Technology

THz Phenomenology

THz Detector Technology

THz System Model

0.65 THz 16 mW
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Characteristics

Task Difficulty

Performance
Prediction

4.5 pW/√Hz at 640 GHz

World’s most sensitive THz 
direct detection receiver

Measured THz transmission through clothing and building materials Extended NVESD IR perception 
model to THz using THz images

Constructed THz imager 
architecture performance model

World’s first THz micromachined vacuum electronics source
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World’s First 
THz Micromachined Source

World’s First 
THz Micromachined Source

SOA 0.65 THz 1 mW Source (1) TIFT 0.65 THz 16 mW Source

(1)  Virginia Diodes, Inc.

1 inch

Tunable Range 610-675 GHz

1 inch
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THz Micromachined SourceTHz Micromachined Source

Header

Gun Can

FWG Circuit

Cathode

Body Can

CarrierAnode

Collector-Window 
Flange

Output WG

Focus

Collector Lens

Waveguide

Window

Exhaust Port

Return Path
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Phase I TIFT Power Goal AchievedPhase I TIFT Power Goal Achieved
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SummarySummary

• THz is a tough neighborhood to live in
• THz imaging has significant promise for certain IR-blind 

environments
– Aperture vs. range

• Component technologies are critical
– Sources
– Receivers
– Integration
– Architectures

• DARPA is actively supporting research
in THz electronics

THz and Sub-MMW imaging may be the only possible solution to 
IR-blind imaging for many missions
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