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1 Scientific and Technical Objectives 

The central challenge in the BICA program is to develop neuromorphic theories, designs and 

resulting cognitive architectures that are comprehensive and cover the full range of human 

cognition. One of the limitations of neurally inspired brain architectures that have been 

characterized to date is that they tend to solve modal problems (visual object recognition, 

audition, motivation, etc.) in disparate architectures whose design embodies specializations for 

each modal problem. In addition, there are often very different underlying theories and 

architectures for the same cognitive modal problem. This presents a significant challenge in 

seamlessly integrating these disparate theories into a comprehensive architecture such that all 

cognitive functionalities can be addressed. Computational design and implementation of these 

architectures is another major challenge. These architectures must be amenable to 

implementation as stand-alone or hybrid neuro-AI architectures via software/hardware and 

evaluation in follow-on phases. 

Our objective in BICA Phase I is to develop neuroscience theories and principles towards a 

biologically inspired cognitive architecture for integrated learning, action and perception (BICA-

LEAP). BICA-LEAP is based on the concept of brain operating principles (BOPs) and 

computational paradigms (CPs) to realize structural, functional, and temporal modularity and 

also integrate the various neural processes into a unified system that can exhibit a wide range of 

cognitive behaviors. The aim of our work in Phase 1 has been to provide theories and brain 

principles towards an architecture and methodology that create the firm basis for follow-on 

phases to simulate and implement cognitive architectures. A single comprehensive architecture 

that covers the full range of human cognition will provide a basis for developing cognitive 

systems that can not only successfully function in a wide range of environments, but also thrive 

in new environments. We envision that BICA-LEAP will be integrated into a variety of 

applications and existing systems, providing support or replacement for human reasoning and 

decision-making, leading to revolutionary use in military and commercial applications. 

 

2 Approach 

As we are developing our architecture, we are focused on key BOPs and CPs: these include 

complementary processing, laminar computing, and Adaptive Resonance Theory. 

Complementary processing postulates several complementary and hierarchically interacting 

1 Approved for Public Release, Distribution Unlimited



processing streams and sub regions that cooperate and compete in parallel. Laminar computing 

postulates a uniform layered format/structure for neural circuitry in various brain regions that 

represents the brain’s approach to reusable computing. Adaptive Resonance Theory is a 

framework that allows autonomous adaptation in real-time to a rapidly changing and complex 

world. BICA-LEAP also integrates learning mechanisms, adaptively timed neural circuits, and 

reinforcement-learning-based neural circuits that model emotional and motivational drives to 

explain various cognitive processes including reasoning, planning, and action. The above key 

BOPs and CPs provide our architecture with the ability to control a flexible repertoire of 

cognitive behaviors that are most relevant to the task at hand. These characteristics are realized 

using an inherently nonlinear and parallel architecture and offer a powerful alternative to the 

linear and probabilistic models of traditional AI-based systems.  

 

3 Concise Accomplishments 
Key accomplishments in Phase I to date include: 

1. Neural principles of goal-driven scene understanding modulated by saliency and 

attention. 

2. Neural principles of multimodal communication that benefit from interactions between 

language and action repertoires. 

3. Neural principles of learning sequentially planned behaviors guided by the laminar 

computing. 

4. Integrated view of models that support neurophysiological and psychophysical data. 

 

4 Extended Accomplishments 

4.1 Goal-driven Scene Understanding 
Integration of goal-driven, top-down attention and image-driven, bottom-up attention is 

crucial for visual search. For instance, in robot navigation it is important to detect goal-relevant 

targets like road signs and landmarks, and to simultaneously notice unexpected visual events like 

sudden obstacles and accidents. Yet previous research has mostly focused on models that are 

purely top-down or bottom-up. Our main focus has been on integrating bottom-up attention with 

goal-driven top-down attention and additionally linking attention to invariant object recognition 

(size, position, and view invariance). We have developed a preliminary plausible architecture 
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that links all of the above and have identified the main brain operating principles and regions 

involved in these functionalities. The eventual aim is goal-driven parsing of complex, cluttered 

natural scenes for rapid object detection and recognition as well as scene understanding.  

Under BICA funding we have significantly developed our biological framework for goal-

driven scene understanding, outlined in Figure 1. 

The main results are outlined below. 

 

4.1.1 Gist Extraction  
Computing the “gist” of a scene and using it to contextually guide attention towards 

potentially task-relevant targets is a very important component of the overall architecture, as it 

allows the cognitive system to rapidly orient towards scene locations that are more likely to 

contain objects of current interest given a set of goals. To achieve this, we compute a generic 

low-dimensional “signature” of an image, in the form of an 80-dimensional feature vector that 

summarizes the entire scene. Our implementation computes this signature as outlined in Figure 2 

(Siagian & Itti, in press). 

Once such a feature vector is computed that captures the gist of the entire scene, it can be 

exploited by the system in two ways: 

1) to perform scene classification, which in turn will be used to prime the rest of the 

architecture to look for objects that are likely to occur in the given type of scene  

(Siagian & Itti, 2005). We have described and validated this simple context-based scene 

recognition algorithm for mobile robotics applications. The system can differentiate 

outdoor scenes from various sites on a college campus using a multiscale set of early-

visual features (Figure 2), which capture the gist of the scene into a low-dimensional 

signature vector. Distinct from previous approaches, the algorithm presents the advantage 

of being biologically plausible and of having low computational complexity, sharing its 

low-level features with a model for visual attention that may operate concurrently on a 

robot. We compared classification accuracy using scenes filmed at three outdoor sites on 

campus (13,965 to 34,711 frames per site). Dividing each site into nine segments, we 

obtain segment classification rates between 84.21% and 88.62%. Combining scenes from 

all sites (75,073 frames in total) yields 86.45% correct classification, demonstrating 

generalization and scalability of the approach (Siagian & Itti, 2005).  
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Figure 1.  Architecture for the construction of goal-oriented cognitive representations of dynamic 
natural scenes. Each cycle of activity passes through four phases: Preparatory task biasing of low-
level vision once the task is known and before visual input is received; Feature Analysis that will 
serve in computing gist, salience maps, and task-relevance maps (TRMs); Recognizing by selecting 
the most salient and relevant location in the scene, and updating the short-term memory (STM) 
based on how it relates to currently relevant entities; and Updating by which recognized objects, 
actors or actions on a given attention shift are used to update both STM and TRM, so that 
preparation for the next shift of attention can begin and be dependent on the current partial 
evaluation and cognitive representation of the scene. 
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Figure 2.  Computing the gist of a scene using simple feature channels over the entire image. 

 

2) Learning the association between gist signatures and likely eye positions of human 

observers performing a visually-guided task. This allows the system to attend 

preferentially to locations that would be visited by the human eye under identical task 

conditions (Figure 3). In this work we have recorded eye movements of humans while 

they were interactively solving complex tasks, such as playing video games. Through an 

incremental learning algorithm, the algorithm is able to associate human eye position 

with scene gist. On new video games, the system can then predict, in the form of a 

probabilistic map, where people solving the same task as used for training are more likely 

to look. This map is then combined with the bottom-up saliency map, yielding a 

combined bottom-up / top-down attention guidance map (Peters & Itti, 2006). 
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Figure 3.  Prototype (Peters & Itti, 2006) combined bottom-up + top-down model and comparison 
with human eye movements. While a subject was playing this jet-ski racing game (upper-left), his 
gaze was recorded (large orange circle in all four quadrants). Simultaneously, the top-down map 
(upper-right) was computed from previously learned associations between scene gist and human 
gaze (maximum top-down activity indicated by small red circle). The bottom-up saliency map was 
also computed from the video input (lower-left, maximum at small blue circle). Finally, both maps 
where here combined by taking a pointwise product (lower-right, maximum at small purple circle). 
This frame exemplifies a situation where top-down dominates gaze allocation (several objects in the 
scene more bottom-up salient than the one being looked at). 

4.1.2 Biasing Attention Top-Down Towards Features of Interest  
Despite substantial neurobiological and behavioral evidence that knowledge modulates 

feature processing and facilitates visual search, until now there was no mathematical theory to 

capture such top-down influences. We have developed, in part under BICA funding, an optimal 

theory of how prior statistical knowledge of target and distractor features modulates the response 

gains of neurons encoding low-level visual features, such that search speed is maximized. 

Through numerical simulations, we have shown that this theory successfully explains many 

reported behavioral and electrophysiological observations including top-down effects such as the 
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role of priming, role of uncertainty, target enhancement and distractor suppression, as well as 

bottom-up effects such as pop-out, role of target-distractor discriminability, distractor 

heterogeneity, linear separabilty and others. Further, the theory makes surprising predictions 

whereby finding a target may sometimes require suppression of target features, or enhancement 

of non-target features. We validated these counter-intuitive predictions through new 

psychophysics experiments. Four naive subjects performed a difficult search for 55-degree-

oriented target among 50-degree distractors. The gains thus set up were tested by randomly 

inserting probe trials, in which we briefly flashed (200 ms) four items representing the distractor 

(50 degree), the target (55 degree), relevant as predicted by the theory (60 degree), and steep (80 

degree) cues. Although subjects searched for a 55 degree target, as predicted by the theory, there 

were significantly higher number of reports on the 60 degree item (paired t-test with p<0.05). 

These results provide direct experimental evidence that humans may deploy optimal feature gain 

modulation strategies (Navalpakkam & Itti, 2006). 

 

4.1.3 Role of Memory in Guiding Attention 
Moving towards higher cognitive processes, we noted that paying attention to the right thing 

at the right time underlies the ability of humans and other animals to learn, perceive, and interact 

with their environment (Itti, 2006). A central unresolved question is the time frame in which 

spatial memory guides attention, with current estimates ranging from a single fixation to 

seconds, minutes, or even days. In a recent publication (Carmi & Itti, 2006) we answered this 

question by revealing the time course of attentional selection during natural vision. We asked 

human participants to visually explore either continuous or scene-shuffled video clips, and 

quantified the impact of memory-free influences on overt attentional selections (saccades) based 

on a computational saliency model. Overall, scene shuffling resulted in no significant differences 

in the impact of memory-free influences compared to continuous viewing. However, abrupt 

scene transitions (jump cuts) led to sharp peaks in the impact of memory-free influences, which 

then declined progressively across 7 fixations for up to 2.5 seconds. These results indicate that 

visual exploration of dynamic scenes critically depends on spatial memory traces that persist 

across several fixations for up to a couple of seconds. 
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4.2 Language/Symbolic Communication 

The goal in this task is to integrate neural models of language production and recognition as 

well as models of embodied cognition and its link to image understanding. We have explored 

neural models of language production and understanding. Regarding language production, we 

have begun using neural models of articulatory control with correction from somatosensory and 

auditory feedback. Regarding language understanding, we have explored a number of models 

from the acoustic, lexical, and semantic levels. Higher-level language production will focus on 

goal-directed image understanding and question answering. The end goal is a comprehensive 

bio-inspired architecture with underlying models and principles for speech comprehension and 

production.  

The need for enhanced multimodal interaction with human users and other systems (e.g., 

animals, computers) has been only partly met by AI achievements.  Bio-inspired approaches on 

the other hand have tended to focus on modal problems in disparate architectures.  Therefore, we 

have approached the problem of language and symbolic communication in the context of an 

integrated system including vision (Task B1.1) and action (Task B1.3).  In particular, this task 

has: 

1. continued to study how language emerged with respect to praxic action and the Mirror 

Neuron System, 

2. extended models of symbolic description and question answering of a scene (e.g., who is 

doing what to whom), 

3. interfaced work on the auditory and vocal periphery, and 

4. collected a literature review of the neural correlates of language comprehension and 

production. 

 
Since we have sought a single comprehensive architecture based on core BOPs and CPs, our 

architecture has the ability to control a flexible repertoire of cognitive behaviors that benefit from 

interactions between language, vision, and action repertoires. 

The four previously-mentioned research thrusts will now be explained in greater detail. We 

also highlight the biological inspirations and constraints that we have incorporated into this 

work. 
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Mirror Neuron System 

The analysis and reflection of Arbib and Rizzolatti (1997; Rizzolatti and Arbib, 1998) on the 

macaque mirror system and a human “mirror system” in or near Broca’s area, traditionally 

thought of as involved in speech production, led Arbib and Rizzolatti  to develop the Mirror 

System Hypothesis (MSH).  The Mirror System Hypothesis states that the evolutionary basis for 

language parity is provided by the mirror system for grasping, rooting speech in communication 

based on manual gesture. 

 

 
 
Figure 4.  Key data: Monkey F5 (with its mirror system for grasping) is homologous to human 
Broca’s area. Imaging studies show activation for both grasping and observation of grasping in or 
near Broca’s area. 
 

Arbib (2003) has developed a general framework, refining the original formulation of MSH, 

that encompasses seven different stages from grasping to simple and complex imitation, 

protosign, protospeech, and language. Current work encompassing grasping includes the Infant 

Learning to Grasp Model (ILGM) (Oztop et al., 2004) and the Mirror Neuron System (MNS) 

model (Oztop and Arbib, 2002).  The ILGM model presented by Oztop et al. (2004) shows how 

to learn to make motor plans in response to sensory stimuli such that open-loop execution of the 

plan leads to a successful grasp.  MNS is a model of action recognition learning by mirror 

neurons of the macaque brain.  Simple and complex imitation requires the ability to construct 

and re-parameterize motor schemas.  Towards that end, the tuning of schema-based motor plans 

has been sought with respect to affordances and desirability (M. Arbib, personal 

communication).  Protosign, protospeech, and language remain topics for future research 

agendas. 
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Modeling of the mirror system for grasping and its development to chart the brain 

mechanisms involved in the production and comprehension of multi-modal language provides a 

clear understanding of the way in which evolution has “re-used” various brain operating 

principles in passing from praxic action to communication. 

Development of the Mirror System Hypothesis began with the discovery that mirror neurons 

in the macaque are homologous to Broca’s area in humans (Arbib and Rizzolatti, 1997; 

Rizzolatti and Arbib, 1998).  Arbib and Bota (2005) looked at further homologues between 

macaque and human to ground further work on the origin of language.  Three major parallel 

parieto-frontal interactions, summarized in the figure below, highlight the structure-function 

mapping of the MNS. 

 

 
Figure 5.  A high-level view of the cumulative emergence of three fronto-parietal systems: praxis, 
action understanding, and language production (in multiple modalities).  (From Arbib and Bota 
(2005).) 
 

Praxis flows from the visual centers of the brain (retina, LGN, V1, etc.) to the intraparietal 

sulcus of parietal cortex (AIP) region, and then onto F5 canonical neurons. Action understanding 

begins in the visual centers of the brain and continues to the rostral part of the superior temporal 

sulcus (STSa), and finally to the inferior parietal area PF (Brodmann area 7b).  Dissociation data 

from humans shows that the praxic use of size information and the declaration of that 

information, either verbally or through pantomime, are due to a segregation in parietal and 

inferotemporal streams.  Language comprehension and pantomime goes from the visual centers 
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to Wernicke’s area and the temporo-parietal (Tpt) region; language production continues from 

there to Broca’s area.  The level of detail in this figure was designed to elicit further modeling.  

Fully implemented models of grasping and action recognition include FARS (Fagg and Arbib, 

1998) and MNS (Oztop and Arbib, 2002).  Each of these models includes detailed synthesis of 

anatomical and physiological constraints as diagramed below. 

 

 
Figure 6.  A lower-level view of action understanding as in the MNS. (From Oztop and Arbib 
(2002).) 
 

There are three major components: a dorsal stream, a ventral stream, and a mirror neuron 

core supporting grasp choice, grasp location, and action recognition, respectively.   Further 

details into each stream can be seen in Figure 6. 

The MNS framework established by Arbib (2003) includes the following stages:  grasping, 

imitation, protosign, protospeech, and language.  Some of the structure-function mapping in 

grasping is summarized in the figures above.  The computational models of IGLM (Oztop et al., 

2004) and MNS (Oztop and Arbib, 2002) will also generate testable hypothesis regarding the 

nature of how the brain performs these tasks.  Complex imitation requires the ability to construct 

and re-parameterize motor schemas (among other things), which are probably served by the basal 

ganglia and pre-supplementary motor area (M. Arbib, personal communication).   

 

Description and Question Answering of a Scene 

Itti and Arbib (2005) describe a computational framework that explores the interaction 

between focal visual attention, the recognition of objects and actions, and the related use of 

language.  Central to this work are the notions of “minimal subscene” and “anchored subscene” 
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to provide a middle ground representation, in which an agent is linked to objects or other agents 

via some action. 

Although in general the language system and the visual system may continually influence 

each other, the design can divide the effort as much as possible between the two systems.  On the 

visual side, one can explore how scene analysis based on multiple fixations could deliver a 

variety of representations.  This is the subject of Task B1.1, where a preliminary model of visual 

attention that links bottom-up salience, contextual cues, object recognition, top-down attention, 

and short-term memory in building  representations of subscenes has been presented by 

Navalpakkam and Itti (2005).  On the language side, one can explore the expansion of a given 

representation into a sentence that expresses it, or given a question, the creation of a 

representation that can query a scene.  This subject can be addressed with the development of 

Construction Grammar.  

The integration of visual attention and object recognition and the use of language to describe 

“minimal subscenes” has been outlined in the Salience, Vision, and Symbolic Schemas 

architecture (Itti and Arbib, 2005), as shown below. 

 
Figure 7: The SVSS framework.  Minimal subscenes and symbolic schemas for episodes as the interface 
between vision and language.  (From Itti and Arbib (2005).) 
 

We accept the Wernicke-Geschwind theory as necessary but not sufficient for all language 

capabilities.  Clearly, damage to Wernicke’s area, the arcuate fasciculus, and Broca’s area can 

lead to fluent, conduction, and nonfluent aphasias, respectively (Dronkers et al., 2000).  

However, the theory makes little mention of manual communication, as detailed in the previous 

section, and does not mention what happens before Wernicke’s area, or after Broca’s area, as 

detailed in the next section. 
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Following the synthesis of Dronkers et al. (2000), beyond the Wernicke-Geschwind theory, 

there are regions of the brain that are important in rule checking (at many levels), grounding, the 

interaction thereof, and prosody and pragmatics.   Rule checking is partly supported by Broca’s 

area involvement in anaphora, short term memory (cf. Baddeley’s articulatory loop), and other 

grammatical judgments.  Broca’s area is also supported by left frontal cortex, left parietal cortex, 

sensorimotor areas above the sylvian fissure between Broca’s and Wernicke’s area (lower sectors 

of Brodmann’s areas 3, 1, 2, and 4), the insula, and the right hemisphere.  Wernicke’s area helps 

support grounding in collaboration with portions of the left temporal lobe.  Assembling words 

and coordinating speech articulation is believed to be rooted in the arcuate fasciculus’ ability to 

connect temporal, parietal, frontal and especially insular cortices.  The initiation and 

maintenance of speech is supported by the supplementary motor area and the anterior cingulate 

region.  Finally, prosody and pragmatics are thought to be mediated by the right hemisphere.  

Damage to the anterior right hemisphere leads to deficits in the production of prosody, while 

damage to the posterior right hemisphere leads to deficits in the comprehension of prosody. 

Auditory and vocal periphery 

Whereas a schema level treatment of language perception and production may serve some 

purposes, the true use of language requires solutions to such demanding problems as multi-modal 

integration and real-time motor control.  Several biologically-faithful models of these lower-level 

functions have been developed.  These models leverage the design constraints of biological 

systems to produce such features as incremental learning and distributed processing.  

Language perception begins with the ability to tease apart sound sources into distinct mental 

“streams,” as seen in the “cocktail party problem.”  The model of Grossberg et al. (2004) 

clarifies how the frequency components that correspond to a given acoustic source may be 

coherently grouped together into a distinct stream based on pitch and spatial cues.  Streams are 

formed as spectral-pitch resonances that emerge through feedback interactions between 

frequency-specific spectral representations of a sound and its pitch.  These resonance and 

matching mechanisms are specialized versions of Adaptive Resonance Theory, or ART— a 

common BOP repeated throughout our architecture. 

After sound sources are segregated, features within a stream point to phonemic or other 

atomic units of speech perception.  One model that models the interaction transient and sustained 
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properties of the acoustic signal that roughly corresponds to consonants and vowels, respectively, 

has been developed (Boardman et al., 1999).  Although its ability to model psychoacoustic 

phenomena is quite deep—it can handle rate-invariant speech processing and other perceptual 

context effects—its range is somewhat limited to simple inputs.  Therefore, we have chosen to 

use an on-line supervised learning system (Carpenter, 2003) as to make arbitrary mappings 

between acoustic input and phonemic labels outputs. 

The integration of phonemes (or phoneme-like units) into words is not simply a feed-forward 

process.  During fluent speech perception, variations in the durations of speech sounds and silent 

pauses can produce different perceived word groupings.  The model of Grossberg and Myers 

(2000) elucidates how sequential activation and storage of phonemic items in working memory 

provide bottom-up input to unitized “word” representations, or list chunks, of varying lengths.  

These list chunks compete with each other as they dynamically integrate this bottom-up 

information, with winning groupings feeding back to provide top-down support to their 

phonemic inputs.  This model, shown below, provides a further illustration of how ART-like 

dynamics can explain diverse auditory perceptual events. 
 

 
Figure 8: ART-like resonant dynamics explain diverse auditory perceptual events.  (From 
Grossberg and Myers (2000).) 

 

Beyond word-level recognition, grammatical constraints need to be considered.  The 

ability to self-organize integration of symbol categorization and phrase structure rules can be 

achieved by some networks (Negishi, 1995).  Without explicit instruction or external teachers, 

these networks classify words and phrases, and evaluate how likely these categorized tokens 

form higher-level phrases.  Higher-level phrases are fed back to its classifier networks in a 

reduce operation, while introduction of a new word or phrase creates a shift operation.  This 
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model incorporates several ART-like notions such as bottom-up activation of categories and 

suppression of learning when top-down expectations are met.   

Embodied semantics, at the most general level, requires a categorical language 

representation in the What cortical stream and its affordances in the Where cortical stream (along 

with other notions of appearance that may be in the What stream as well).  The neural network of 

Grossberg and Repin (2003) is one such network focused on the representation and comparison 

of multi-digit numbers.  However, its structure may be general enough to allow the encoding of 

any cardinal feature space.  Within such a network, an analog channel integrates transient 

responses where they activate an ordered spatial map that selectively responds to the number of 

events in a sequence and exhibits Weber law properties.  Going beyond numbers, if the analog 

channel registers degree of match to a certain object or action class, then its registration to a field 

of orderly topology of quantities would allow size comparisons.  Furthermore, by noticing 

consistently overlapping network activations, one can make ontological comparisons through the 

use of a rule-discovery algorithm as described by Carpenter et al. (2005).  Variants of these 

model mechanisms have been used elsewhere to explain data about other Where stream 

phenomena, such as motion perception, spatial attention and target tracking (e.g., Chey et al., 

1998; Gancarz and Grossberg, 1999; Grossberg, 1999). 

Turning to language production, we find that the model of Guenther et al. (2006) learns 

to control speech articulators by babbling and monitoring acoustic feedback.  The model is 

capable of demonstrating a variety of human-like speech effects such as: linear velocity/distance 

relationships, motor equivalence, speaking rate effects, and carryover and anticipatory 

coarticulation.   

The hypothesized neural correlates for low-level language and comprehension are 

expanded in the current section. 

Source segregation—imperative in “cocktail party” phenomena—begins with the 

transduction of sound into primary auditory cortex (A1), via the cochlea and medial geniculate 

nucleus (MGN) of the thalamus (Hudspeth, 2000).  The acoustic grouping model of Grossberg et 

al. (2004) dynamically integrates pitch channels into streams through center-surround 

competition and ART dynamics (Carpenter and Grossberg, 1987).  Based on an analogy to visual 

processing, pitch channels are probably represented in A1, but streams are most likely 

represented after A1.  The BOPs and CPs of center-surround competition and ART are found 
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throughout the brain, both within modalities and across modalities (please see Grossberg (1999) 

for a review).   

The detection of phonemes is assumed to occur before Wernicke’s area.  He et al. (1997), for 

example, found cat neurons tuned for iconic features of phonemes in the dorsal zone of cat 

auditory cortex.  Temporal integration of phonemic features, therefore, would occur at this level.  

To handle a large vocabulary of phonemes, however, we have used a supervised learning system 

(Carpenter, 2003) to perform an acoustic-to-phonemic mapping. 

Word-level integration of phonemes (or phoneme-like units) is assumed to occur in 

Wernicke’s area.  As stated above, these phonemes are represented before Wernicke’s area.  The 

model of Grossberg and Myers (2000) dynamically integrates phonemes into words through 

center-surround competition, habituative transmitter dynamics, and a Masking Field (Cohen and 

Grossberg, 1987) all in an ART structure.  Thus ART dynamics continue at this level as well. 

Grammatical judgments are crucial to language understanding.  In terms of role classification 

of words, Broca’s area in collaboration with the left frontal cortex and left parietal cortex are 

especially important (Dronkers et al., 2000).  Thus the computations of a network to learn 

grammatical constraints (Negishi, 1995) would be seated here.  However, in terms of grounding, 

Wernicke’s area with portions of the left temporal lobe are important (Dronkers et al., 2000).  

Although much grounding has focused on visual object naming, the model of Grossberg and 

Repin (2003) also looks at how the parietal cortices support numbers and their comparisons. 

Turning to language production, the selection of a grammatical construct is assumed to occur 

in the parietal cortex (the “cortical chunking” area).  From there, the frontal cortex is the most 

likely area where words or phrases are downloaded (“working memory” area).  Phonetic 

encoding would continue in the insular cortex, while the initiation and maintenance of speech 

would occur in the supplementary motor area and the anterior cingulate region (the “execution 

module”).  The interaction of all these processes would heavily use the arcuate fasciculus.  

Prosodic effects would be mediated by the right hemisphere.  These conclusions are based on 

mapping the general structure-function mapping of the sequencing model of (2002) to the 

constraints of language production (Dronkers et al., 2000).  Finally, the “syllabery” of articulator 

control is assumed to be within the left ventral premotor cortex (Guenther et al., 2006).   

The articulatory control model of Guenther et al. (2006) itself is composed of complex 

interactions between premotor (e.g., left ventral premotor cortex), motor (e.g., M1), 
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somatosensory (e.g., inferior parietal cortex) and auditory cortices (e.g., superior temporal 

cortex). The motor and auditory areas mentioned above interact, and often overlap, with Broca’s 

and Wernicke’s area.  In its current implementation, cerebellar side-loops and basal ganglia 

gating have been simplified.  The former can be elaborated from by the model of Rhodes and 

Bullock (2002), while the latter can be integrated into the various models by Bullock and 

colleagues (please see Bullock (2004) for a review).  

The brain areas mentioned above for language comprehension and production involve almost 

all parts of the brain (e.g., frontal, parietal, temporal cortex, as well as the cerebellum and basal 

ganglia). This partly illustrates how biological systems distribute functions across many 

structures.   

4.2.1 Preliminary Implementation/Results 

The MNS model of Oztop and Arbib (2002) has been applied to the recognition of three 

different types of grasps.  Manuscripts are also in preparation to elaborate on the MNS model, 

IGLM model (Oztop et al., 2004), and schema-based motor planning with respect to affordances 

and desirability (M. Arbib, personal communication). 

Simulations of word-level integration of phonemic units (Grossberg and Myers, 2000) have 

also been conducted using phonemically-transcribed speech from the NTIMIT dataset 

(Jankowski et al., 1990).  Phonemic items provide bottom-up input to “word” list chunks.  These 

list chunks then support their current and expected input.  Habituative transmitter gates between 

and within both levels allow word to “tire out” or “piggy back” off partial phonemic strings that 

have ended abruptly or continued after pause, respectively.  These results were shown at the 

Boston midterm meeting in the form of an object-oriented Matlab GUI.  Results showed the 

ability of the network to be trained on one sentence, and tested on a permutation of the same 

sentence.  In this implementation, phonemes were presented as a binary string denoting the 

presence or absence of a given phoneme at a given time. The ability to present phonemes 

acoustically was also studied and implemented.  Preliminary results were promising.  

4.3 Learning Sequentially Planned Behaviors 

Brain evolution has enabled land vertebrates to adopt highly dynamic life styles that involve 

continuous growth over significant fractions of the life cycle as well as adaptation to large 

seasonal fluctuations in body parameters and resource availability. Such animals must 
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continually retune their sensory-motor control pathways in an attempt to keep up with the non-

stationary properties of their bodies and their contexts of action. Recent analyses of the adaptive 

neural substrates of planning and action, including the frontal regions of the cerebral cortex, the 

amygdala or prelimbic cortex, the basal ganglia complex and the cerebellar system, have 

revealed a design that allows just in time assembly of the effective control system needed for the 

task at hand. Such capability allows us to acquire and exhibit intelligent behaviors that ensure its 

survival in a continuously changing world.  

In this task, we have looked at the necessary theory and an integrated model of a neural 

architecture that can address various aspects of learning and planning sequential behaviors. The 

theory explains instrumental concepts such as reinforcement, drive, incentive, motivation and 

motor control and integrates their functions with cognitive concepts such as expectancy, 

competition and resonance in the brain. We are developing a unified framework that integrates 

the various parts of the brain that offer neurophysiological evidence for learning and planning of 

sequential behaviors including: a) thalamo-cortico-hippocampal-cerebellar-basal ganglia 

interactions for adaptive timing of behaviors based on predictions of when rewards may or may 

not occur for particular actions; b) thalamo-cortico-amygdala interactions to learn cognitive-

emotional associations that mediate the motivational relevance of multi-sensory inputs necessary 

for construction of plans/actions (or sequence preparation) at the prefrontal/orbitofrontal cortex; 

c) adaptive competitive queuing in the cerebellum that enables queuing of plans for action based 

on mutual competition and; d) coordinated scaling of these plans in the cerebellum (mediated by 

the basal ganglia) to achieve precisely timed actions.  

The aim of this integrated framework is to show how real-time analysis of adaptive behavior in 

various environments can disclose the underlying network principles and mechanisms that result 

in a unified design. Learning plays a key role in the acquisition of these complex behaviors (refer 

to Figure ). The processes that control the learning and recognition of sensory and cognitive 

memories, often called declarative memory (Mishkin, 1982, 1993; Squire and Cohen, 1984, 

Desimone, 1991; Gochin, Miller, Gross, and Gerstein, 1991; Harries and Perrett, 1991; Mishkin, 

Ungerleider, and Macko, 1983; Ungerleider and Mishkin, 1982) provide the essentials of the 

sensory world in the form of “what” are the objects found in a scene and “where” they are 

located in the world. 
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Figure 9. The various processing streams and the brain regions involved during the learning and 

storage of plans. 

The interactions between the “what” processing stream (located in temporal lobe of the 

brain) and the “where” processing stream (located in parietal lobe of the brain) help in 

construction of declarative and episodic memory that is eventually useful for construction of 

plans. The performance of learned motor skills that are often classified as part of a procedural 

memory system (Gilbert and Thatch 1977; Ito, 1984; Thompson, 1988) is related to the “why,” 

“when” and “how” processing streams.  

The “why” processing stream uses reinforcement learning to assess the value of 

objects/stimuli and helps in plan selection and decision-making. The basal ganglia complex is 

involved in assessing values of external rewards while the amygdala is implicated in relating the 

external stimuli to internal states of the animal and provides the motivational influence on plan 

construction. The “when” processing stream is primarily involved in learning to adaptively time 

the execution of plan(s) and action(s). The basal ganglia complex and cerebellum are primarily 

implicated for this function. They achieve this competency by adaptive switching and gating 

circuits, which enable on-the-fly reconfiguration in order to match the sensory-motor flows to the 

present task. This also allows the animal to add more cognitive and volitional dimensions to its 

processing. Finally, the “how” processing stream is involved in the actual execution of a plan 

such as reaching or grasping. The cerebellum and motor areas such as the spinal circuitry are 

involved in the control of this processing stream.  
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These processing streams are linked via the prefrontal cortex, which acts as the behavior 
planner. This region of the brain is a key player in the learning, storage and retrieval of plans and 
its combines the context and goals with which the animal is operating to select among candidate 
plans and specify the plan of action (into working memory). Serial and parallel interactions 
between these learned competencies (“what,” “where,” “why,” “when,” and “how”) via the 
prefrontal cortex enables the animal to acquire complex behaviors (refer to  

Figure  10). We will highlight the key neural principles and mechanisms as well as the 

associated brain structure-function mapping and computational models for learning and 

execution of sequentially planned behaviors. 
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Figure 10. Serial and parallel interactions between the various learned competencies and the 
prefrontal cortex enables the generation of complex behaviors. 

4.3.1 Behavior Conditioning: What-Where-Why-When Interactions  

Psychologists have identified classical and operant conditioning as two primary forms of 

learning that enables animals to acquire the causal structure of their environment. In the classical 

conditioning paradigm, learning occurs by repeated association of a conditioned stimulus (CS), 

which normally has no particular significance for an animal and always gives rise to an 

unconditioned response (UCR).  For example, a rat that is repeatedly shocked (UCS) shortly 

after a red light is turned on (CS) will associate the red light with fear, meaning that eventually, 

presentation of the red light alone elicits a conditioned response (CR) resembling the fear 
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response elicited by the shock itself. Hence, classical conditioning is the learning process that 

enables animals to recognize informative stimuli in the environment. 

In the case of operant conditioning, an animal learns the consequences of its own actions. 

More specifically, the animal learns to exhibit more frequently a behavior that has led to reward 

in the past, and to exhibit less frequently a behavior that has led to punishment. For example, a 

pigeon can be trained to peck at an illuminated key in order to receive a small food reward, while 

a human might learn to stop at a red light in order to avoid getting in an accident. Traditional 

neural networks research have suggested that neural networks based on associative learning laws 

can model the mechanisms of classical conditioning, while neural networks based on 

reinforcement learning laws can model the mechanisms of operant conditioning (Sutton and 

Barto, 1981; Sutton and Barto, 1990). These learning mechanisms have also been suggested to 

have biological underpinnings (Doya, 1999). At least two fundamental problems arise from these 

sorts of neural networks: first, the majority of neural networks function only as long as the inputs 

and outputs are controlled and timed carefully with respect to each other; second, most neural 

networks have no means of learning to discriminate “good” inputs from “bad” inputs on the basis 

of an internal value system. The first of these problems has been called the synchronization 

problem (Grossberg 1971; Grossberg 1982): how can learning between a CS and a UCS occur 

reliably even though they are presented at different times on different trials? The second problem 

of discriminating “good” from “bad” is related to motivation, the internal force that produces 

actions on the basis of momentary balance between our needs and the demands of the 

environment (Dorman and Gaudiano, 1994). 

The emotional centers of the brain, such as the amygdala, interact with sensory and prefrontal 

cortices to generate affective states, attend to motivationally salient sensory events, and elicit 

motivated behaviors. Activating the feedback loop between cognitive and emotional centers is 

predicted to generate a cognitive-emotional resonance that can support conscious awareness of 

events happening in the world and how we feel about them. Recent experimental data provide 

increasing support for the predicted role of interactions between amygdala and orbitofrontal 

cortex in the control of response selection and predicted outcomes based on value acquired 

through previously rewarded behaviors (Baxter et al., 2000; Schoenbaum et al., 2003).  
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Three types of learning take place among these representations: Conditioned reinforcer 

learning (CRL) enables sensory events to activate emotional reactions at drive representations. 

Incentive motivational learning (IML) enables emotions to generate a motivational set that biases 

the system to process cognitive information consistent with that emotion. Motor learning allows 

sensory and cognitive representations to generate actions.  

We have modeled the emotions within this model using a gated dipole circuit that represents 

a minimal network that is capable of generating a sustained but habituating (decaying), on 

response to onset to a cue, as well as transient off response (or antagonistic rebound) to offset of 

a cue (refer to Figure ). This gated dipole along with associated learning and feedback called 

Recurrent Associative gated Dipole (READ), and has been used to demonstrate various classical 

conditioning paradigms (Grossberg and Schmajuk, 1988). The amygdala is modeled a bank of 

read circuits with opposing emotional drives as each bank’s outputs. These drives compete for 

every CS input and the winner drive is used to gate the selection of a motivationally relevant 

plan at the prefrontal cortex. 

The cognitive-emotional resonance must be adaptively timed or the animal could be 

condemned to either premature goal-oriented responses or to generate maladaptive orienting and 

exploratory movements in any situation wherein the goal object does not immediately appear. 

Adaptively timed learning enables both attention and action to be appropriately timed to generate 

adaptive behavior in each environment. Evidence for adaptive timing has been found during 

many different types of reinforcement learning. Such learning is optimal at a range of positive 

ISI between the CS and US that are characteristic of the animal and the task, and is greatly 

attenuated at zero ISI and long ISIs. Within this range, learned responses are timed to match the 

statistics of the learning environment (Smith, 1968). 
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Figure 11. The READ gated dipole circuit for classical conditioning (reprinted with permission 
from Grossberg and Schmajuk, 1988). 

 

Although the amygdala has been identified as a primary site in the expression of emotion and 

stimulus-reward association (Aggleton, 1993), the hippocampal formation has been implicated in 

the adaptively timed processing of cognitive-emotional interactions. The START model 

(Grossberg and Merrill, 1992, 1996) accomplishes this by showing how circuits within the 

hippocampus that are capable of adaptively timed learning can modulate the responses of ART 

and CogEM circuits that have already been summarized. Hoehler and Thompson (1980) have 

provided experimental evidence that adaptively timed circuits exist in both the hippocampus and 

the cerebellum by doing ISI shift experiments during which the peak time of the hippocampal 

trace can change before the peak time of the discrete adaptive response. 

In Figure 12, a computer simulation of adaptively timed learning within the dentate-CA3 

circuit is shown wherein the output R learns the correct timing of the UCS after 7 learning trials.  
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Figure 12. A plot of computer simulation of the spectral timing model. On the left plot is the activity 
of various stages of the START model and the bottom row shows the response of the network R 
during the 7th learning trial of a CS-UCS presentation. As can be seen from the plot on the right, 
the R output correctly predicts the timing of the UCS when only the CS is presented to the network. 

4.3.2 Behavior Conditioning: Computing Reward Expectation 

Humans and animals can learn to predict both the amounts and times of expected rewards. 

The dopaminergic cells of the substantia nigra pars compacta (SNc) have unique firing patterns 

related to the predicted and actual times of reward (Ljungberg et al., 1992; Schultz et al., 1993; 

Mirenowicz and Schultz, 1994; Schultz et al., 1995; Hollerman & Schultz, 1998; Schultz, 1998). 

In particular, dopaminergic reward signals seem to strengthen the “incentive salience” or 

“wanting” of a certain reward -- that is, the motivation to work for the reward in a given 

behavioral context -- as distinct from the affective enjoyment or “liking” of a reward once 

consumed (Berridge and Robinson, 1998). The “liking” may be mediated by areas other than the 

basal ganglia (McDonald and White, 1993). Recent models (Montague et al., 1996; Schultz et 

al., 1997; Schultz, 1998; Berns and Sejnowski, 1998; Contreras-Vidal & Schultz, 1997; Houk et 

al., 1995) of the nigral dopamine cells have noted similarities between dopamine cell properties 
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and well-known learning algorithms, especially Temporal Difference (TD) models (Montague et 

al., 1996; Schultz et al., 1997; Suri and Schultz, 1988). While providing a degree of insight into 

the information carried by the dopamine signal, the TD approach has not been able to answer the 

questions of what biological mechanisms actually compute the signal, and how. In particular, 

how does learning in the circuit that includes these cells enable them to produce a fast excitatory 

response to conditioned stimuli and a delayed, adaptively timed inhibition of response to 

rewarding unconditioned stimuli?  

We have adopted a model in which the learned excitatory and inhibitory responses (Brown 

et. al 1999) are subserved by different anatomical pathways and the adaptively timed inhibitory 

learning is mediated by metabotropic glutamate receptor (mGluR)-driven Ca2+ spikes in 

striosomal cells. These Ca2+ spikes occur with a spectrum of temporal delays. When a Ca2+ 

spike and a dopamine burst occur at the same time, inhibitory learning is enhanced at the 

corresponding delays. To explicate these excitatory and inhibitory pathways, the model 

functionally explains and simulates the firing patterns of dopamine cells, striosomal cells of the 

striatum, pedunculo-pontine tegmental nucleus (PPTN) cells, ventral striatal cells, and lateral 

hypothalamic cells. Its mGluR-based spectral timing mechanism helps to explain more data than 

the temporal derivative operation that defines the class of TD models previously used to describe 

dopamine cell behavior.   

4.3.3 Learning and Execution of Sequential Plans  

Intelligent behavior depends upon the capacity to think about, plan, execute, and evaluate 

sequences of events. Whether we learn to understand and speak a language, solve a mathematics 

problem, cook an elaborate meal, or merely dial a phone number, multiple events in a specific 

temporal order must somehow be kept in mind temporarily in working memory. Once events are 

stored temporarily in a working memory, they are then grouped, or chunked, through learning 

into unitized representations that encode whole sequences of events (e.g., word and action 

sequences). How these working memory sequences and unitized plans interact during cognitive 

information processing and motor performance remains one of the most important problems 

confronting cognitive scientists and neuroscientists. 
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We have developed a neural model based on a combination of (1) how the layered circuits of 

prefrontal and motor cortex may be organized to achieve processes of working memory storage, 

sequence learning, and motor planning during both cognitive and sensory-motor tasks and (2) 

developed substrates for plan learning and construction and further provides the necessary 

substrates for plan selection and execution. This model combines three forms of representation. 

The first form of representation is parallel response activation subject to an ordering system to 

select which competing plans to execute (also known as competitive queuing models; Grossberg 

1978a, 1982; Houghton, 1996; and Boardman and Bullock, 1995). The second representation is 

called stimulus response chaining where the next movement in response triggered by feedback 

from previous movement (Lashley, 1951; Elman, 1990; Arbib & Dominey, 1995; Cleeremans & 

McClelland, 1990). The third representation is called the serial order wherein items within a 

sequence are tagged or labeled with their relative position within that sequence (Sternberg, 

1978). This approach provides our model to extract the benefits of all the three representations 

while avoiding the pitfalls of any single form of representation.  

Grossberg (1978a, 1978b) mathematically derived STORE working memories from two 

postulates, which are called the LTM Invariance Principle and the Normalization Rule. These 

postulates assume merely that the representations of items stored in working memory (a) closely 

preserve their relative activations, or ratios, throughout their retention time to enable stable 

learning, and (b) item representations are approximately normalized such that total activity is 

redistributed when new items are encoded. Taken together, these simple rules generate working 

memories that can support stable learning and long-term memory of sequence, or list, chunks. 

List chunks categorize sequences of stored items and their temporal order. In particular, it was 

mathematically proved that, under constant attentional conditions, the pattern of activation that 

evolves in a STORE working memory is typically one of three types:  

(1) A primacy gradient in which the first item to be stored has the largest activity and the last 

item to be stored has the smallest activity. A primacy gradient allows the stored items to be 

rehearsed in their correct order.  

(2) A recency gradient stores the first item with the smallest activity and the last item with 

the largest activity. Rehearsal of a recency gradient recalls the most recent item first and the first 

item last.   
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(3) A bowed gradient may be stored, in which the first and last items to be stored have larger 

activities, and thus are earlier rehearsed, than the middle of the list. It was also proved that, as 

more and more items are stored, a primacy gradient always becomes a bowed pattern.  

In other words, in order to be able to stably learn and remember list chunks or plans based on 

short-term working memory storage of a sequence of events, the brain is limited in the number of 

items that can be recalled in the correct order from the working memory, due to the development 

of a bow in the stored gradient. These models have shown to explain the famous psychological 

experiments (Von Restorff, 1933; Miller, 1956; Murdoch, 1962). 

In the family of STORE models, individual items (events, objects) are categorized, or 

unitized, at an earlier processing stage. Related modeling work developed Adaptive Resonance 

Theory, or ART, to explain how these unitized categories may be learned through interactions 

between several cortical regions (sensory, temporal, parietal, prefrontal), interacting with the 

hippocampal system, and how the top-down expectations from the prefrontal cortex of these 

categories can help to stabilize category learning and long-term memory (e.g., Bradski & 

Grossberg, 1995; Brown, Bullock & Grossberg, 2004; Carpenter & Grossberg, 1991; Grossberg 

& Merrill, 1996; Grossberg, 1978a, 1980, 1999, 2003; Srinivasa and Ahuja, 1999, Engel, Fries & 

Singer, 2001 and Pollen, 1999). These top-down expectations attentively modulate or prime 

during a delay period, and match, synchronize, and amplify the bottom-up distributed features 

that their categories learn to bind. The match/mismatch operations between top-down 

expectations and bottom-up features also permit discrimination between familiar and novel 

events, can drive reset of an active category and its top-down expectation during a mismatch, and 

trigger selection of a better-matching category during the next time interval.  

4.3.4 Cerebellar Learning: Skill Acquisition & Fine Motor Control 

In the performance phase of the selected plans, the cerebellar side-loop plays a major role as 

briefly highlighted in the previous section. We will now look at the cerebellum more closely and 

highlight the model that we will be using based on past work done at BU (Rhodes and Bullock, 

2002). The cerebellum is an ancient neural module implicated in sensory-motor control. Damage 

to appropriate regions of the cerebellum in human adults causes a lasting breakdown in 

coordinated action, especially in high speed actions that require synchronous motion by several 

coordinating joints. Yet the core ability to generate multi-joint movements, with voluntary 
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selection of spatial targets and continuous voluntary control of movement speed, is not 

compromised by cerebellar damage. In multi-joint movements, during which each joint motion 

perturbs the trajectories of mechanically coupled joints, low gain feedback control, by itself, 

implies a very low performance ceiling due to long feedback lags that force them to operate at 

low gain in order to avoid instability. 

The cerebellum can be viewed as a supra-joint-level controller that “sees them coming” and 

correctly schedules control actions that effectively cancel the expected perturbations. On the 

basis of its informational inputs, the cerebellum tightly times its outputs and the rules by which it 

adaptively adjusts those outputs. The outputs of the cerebellum via the deep cerebellar nuclear 

(DCN) stage are organized into discrete motor channels that map one-to-one feedback error 

channels. Thus for every feedback control channel, there is a corresponding cerebellar channel 

whose output excites the same motor command center excited by the feedback error signals 

carried by that channel. Sitting above each DCN channel is an entire population of giant Purkinje 

cells (PC) that normally inhibits the DCN channel. This PC population must learn what 

predictive contexts, exactly when after the detection of these contexts, and by how much they 

should briefly reduce their inhibitory outputs in order to allow transient activation of the DCN 

channel they control. There are a huge numbers of mossy fibers (MF) that receive inputs 

asynchronously from various sensory systems including vision, kinesthesia, touch, balance and 

audition that pass the context and state information to granule cells via mossy fiber rosettes. Each 

granule cell axon becomes bifurcated into parallel fibers (PF). There is an array of PF’s that are 

sampled in distinct subsets by PC’s that affect a given DCN channel. This way the cerebellar 

circuit can sample a distinct but a very large set of potentially predictive contexts. Local 

inhibition applied by Golgi cells to the granule cell helps restrict the search to the signal 

combinations coded by strongly excited granule cells.   

Example: Learning to Reach Spatial Targets  

We have thus far looked at specialized structures and functions of the brain and the models 

pertaining to how they operate. We will now focus on a few examples of how many of these 

modules have to interact in order to realize intelligent behaviors. One of the most studied tasks is 

motor control is reaching targets in space.  
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Once the position of a target relative to the body is known, a trajectory from the current hand 

position to the target must be formed. The phenomenon of motor equivalence (i.e., the ability to 

realize a movement goal using motor means that vary from trial to trial) implies that trajectory 

formation is controlled on spatial rather than motor coordinates. For example, shape of written 

letters remains remarkably consistent when produced with entirely different effector systems 

(Merton, 1972; Raibert 1977). Spatial trajectory formation is also supported by psychophysical 

data, which show that the spatial characteristics of movements to targets remain invariant across 

movements despite large variations in the joint angles from movement to movement (Marasso, 

1981) or changes in the end effector used to reach to the target (Lacquaniti, Soechting, and 

Terzuolo, 1982). The ability to produce a desired movement trajectory in many ways results in 

robustness of movement performance under a variety of environmental conditions. The 

conservation of spatial form across movements made with varying effectors suggests that 3-D 

spatial computations are a critical aspect of the process of trajectory formation. The Direction-to-

Rotation Effector control transform (DIRECT: Bullock, Grossberg and Guenther, 1993), allows 

spatial trajectory formation with motor equivalent movement production. The target is specified 

by a spatial target position vector (TPV) and the spatial present position vector (PPV). The PPV 

is subtracted from the TPV to forma difference vector which represents the desired movement 

magnitude and direction in spatial coordinates. Using the desired movement direction, the 

DIRECT models learns a solution that transforms DV (spatial) into a motor direction vector DV 

(motor) specifying joint rotations. This transformation from direction in 3-D space into joint 

rotations plays a key role in producing a motor equivalent reaching.  

The movements and learning events during motor babbling are not goal oriented. The 

babbled movements are generated internally and the learning events correlate the spatial and 

motor representations coactivated by babbled movements. During subsequent goal reaching 

movements, the target specified is different from the present position of the end-effector and the 

DIRET transform is used to translate the spatial information into joint rotations such that the goal 

is reached. We have implemented this model as an example of integrating multiple modalities 

such as vision, planning and motor control. Simulation were performed (shown in  ) for a three-

joint planar arm performing reaches in 2-D space to verify the model performance of 

unconstrained reaches to targets including reaches using a tool with limb lengths different from 

those used for learning the DIRECT transform. This shows the power of this invariant mapping 
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because it automatically compensates for these different conditions to perform the reach 

successfully on the first try. 

 

 

Figure 13. The DIRET model with physical properties for a three-link robot is shown. The cyan line 
shows the visual target - the end-effector of the hand. 

 

 

Figure 14. The results of simulation of the DIRECT model are shown here. In the top the results 
are shown after the model was trained during a babbling phase. The yellow cluster of points shown 
in the figure corresponds to the trained sample points that the end-effector visited during the motor 
babbling. The first row shows the performance for a reaching task after the robot views the target 
to go to (shown by the cyan line). This performance is for a robot with longer limbs than was used 
to train the robot. The space of reach for the longer robot is much larger than the original trained 
space. However, the robot is still make an effective reach without having to undergo any new 
learning. This illustrates the power of the invariant nature of the mapping learned during 
childhood for reaching purposes. 
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4.4 Initial Brain Operation DataBase (BODB) 

In this task, we have begun using the existing Brian Operation DataBase (BODB) to find 

what features can be added. We are beginning to implement the ability to enter and manipulate 

brain-like models in a schematic format. These schematics will be web-interactive with such 

features as links to other models and semantic zooming. We also plan to input models based on 

brain-like principles for technological applications (e.g., speech recognition or automatic target 

recognition). This has spurred the need for new fields within the BODB, as well as the 

integration and consolidation of much of the material already present in BODB. 

Our approach has been concisely stated by Plangprasopchok et al. (2005): Advances in 

neuroscience have led to a flood of information.  As one contribution to channeling this flood, we are developing 

BODB to facilitate the interchange between those developing new brain models and those developing new 

experiments…The experimental data and analysis tools will be used by the brain modeler in extracting knowledge 

and developing new models, and by the experimenter in designing further experimental protocols. Furthermore, the 

BOP and Model entries will supply knowledge for the modeler to construct new models, and provide the 

experimenter suggestions to contrive new experiments. Consequently, the implementation and integration of these 

features would enhance a theory experiment cycle (Arbib, 2001). 
A “theory experiment cycle” has already been initiated with the use of the NeuroHomology 

Database (NHDB) (Bota and Arbib, 2004).  In refining the Mirror System Hypothesis, Arbib and 

Bota (2005) have sketched a framework to further study the grounding of language in action. 

Our current version of BODB combines features of a Summary Database (SDB) and Model 

Repository (Bischoff-Grethe et al., 2001).  As diagramed in Figure 15, it can link brain operating 

principles (BOPs) to neurobiological data (Summary Data, SD) which provide evidence on how 

the BOP applies to computer models which implement them (often in concert with other BOPs).   

Brain regions/structures mapping 
+ 

Experimental/empirical evidence

Model 
Summary

Design principles
Neural computations
Neural mechanisms

Structure-Function mapping

Simulation 
Result 

Visualization

Design 
principles

Neural 
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Module1 Module2 ......… 
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Figure 15 - Brain Operating DataBase (BODB) is a tool for compiling, integrating and visualizing 
results for building a single comprehensive neuromorphic architecture. It provides a unified 
framework for describing and linking principles, computations, mechanisms, structure mappings 
and summary data. 
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The system also provides data entities for storing article information, BOPs, models, generic 

summary data, brain-imaging data, and finally, their relations.  The entity relationship schema of 

BODB’s fundamental entities is shown below in Figure 16. 

 

Figure 16 - Entity relationship schema of BODB's fundamental entities 

Analysis of brain imaging data is helped by a repository for Talairach-based experimental 

data along with a visualization tool.  The ability to scientifically organize BOPs, CPs, and 

mappings represents a major step towards meeting the BICA program’s 80% comprehensiveness 

goal. In addition, we added a set of table that are responsible for maintaining block diagram for 

models and anatomical relationships, etc., with supplementary information such as box area 

(coordinates) and box name.  These diagrams not only help the user visualize Model entries, but 

also provide connections between models via hierarchical relations.  Connections among entities 

not only allow the user to go back and forth between entries via their relations, but provide 

options for cross search as well (e.g. to search models by related brain operating principles). The 

current version of BODB is implemented in MySQL (DuBois, 2005), which allows Boolean full-

text search. 

The BODB has been explicitly designed to provide a framework for the linkage of 

neurobiological data and computational modeling via the extraction and analysis of general 

operating principles of the brain which provide a unifying perspective on a host of diverse 

studies.  These features are intended for use by both brain modelers and brain experimenters.  By 

providing search tools on models, BOPs, and summary data, one can discover new relationships 
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between all three of these, bridging the gap between computational models and neurobiological 

constrains, hopefully leading to truly brain-like cognitive architectures.  Future steps will include 

the extension of the modular design principles and integration methodology of the NSL to 

provide hierarchical specifications of the architecture in a form ready for detailed 

implementation based on the BODB. 

4.5 Integrating Modules towards Architecture 
Computational modeling of the neuromorphic architecture will use the module designs as the 

starting point. There have been previous attempts at building large systems though not as all-

encompassing in size and complexity as the systems proposed here. Some of the specific 

challenges include integration, scalability, accuracy, debugging and testing.  

Arbib (2003) has written that neural computation is cooperative, embedded (no artificial 

hardware/software partition), and adaptive.  A cognitive system consists of a hierarchy of 

modules, where the intelligence of the system is an emergent property of: 

1. The capabilities of the individual building blocks 

2. The data representations used by these blocks, and 

3. Their connectivity  

 

We have focused on developing building blocks aimed at “basic intelligence,” including 

basic visual processing, complex situation recognition, a sophisticated sense of one’s 

environment, etc.  Our expectation is that complex architectural constructs—abstraction, 

language, reasoning, and planning—can be build on these building blocks.  Central to our design 

constraints has been the notion of scaling.  Indeed, we suspect that it is very likely that sheer size 

is necessary (but not sufficient) major stepping stone to capturing the magic of human cognition. 

After examining the architectural constructs found in BICA-LEAP, we have three modules 

candidates:  dART (Carpenter et al., 1998), schemas (Arbib, 2003), and association modules 

(Palm et al., 1997).  We have studied the first two structures in relation to the more general third 

structure.   

Association modules are useful building blocks because, at the most basic level, they store 

mappings of specific input patterns to specific output patterns.  The access of output is based on 

the “most-likely” rule, but sparse, distributed data representation leads to generalization and fault 
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tolerance.  Simulations of large, simple association networks (up to 1M nodes) on the NASA 

machines (Zhu and Hammerstrom, 2002) has been previously done.  In our NASA simulations, 

we found that basic framework scales, but not simple association modules.  It has been shown 

that current association models are inadequate as models of cortex (O’Kane and Treves, 1992). 

More complex association structures (Granger et al., 1994; Granger, 2005; Lansner and Holst, 

1996; Johansson, 2001; Johansson and Lansner, 2004; Sandberg et al., 2002; Anderson, 2005; 

Hecht-Nielsen, 2003, 2005; Sporns et al., 2000; Fulvi Mari, 2000, 2004), guided by modular 

organization of cortical columns (Mountcastle, 1978, 1998; Braitenberg and Schuz, 1998; 

Braitenberg, 2001) seems like the next logical step.  It can be shown that such networks can be 

analyzed as a “higher order,” non-binary, association model.   

A schema encapsulates the internal complexity of its implementation by separating its 

internal details from the external interface. Schemas can be modeled at the abstract functional 

level, detailed neural level or even below. Modules can be created and modified independently 

from each other. The higher-level functionality can be defined in terms of concurrent activity of 

interacting schemas. The proposed framework can support integration of hardware with software 

modules developed separately in C++, Java and MatLab. 

We have also created a basic framework for the parallel simulation of these modules, and 

studied how to map this framework to large parallel machines. Future porting studies will focus 

on FPGA’s, CMOS chips, molecular computers, etc.  The framework, diagramed in Figure 7, is 

known as Csim, or the Cortex SIMulator (Zhu and Hammerstrom, 2002). 

 

 

Figure 17 – Csim Framework 
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Thus design constraints we have focused on include: modularization and extensibility via object-

oriented programming, and scalability for parallel implementation.  We have followed a two-

staged plan where we have used simple abstractions of modules in the initial architecture that can 

gradually be replaced with detailed neuromorphic designs as we gain continued expertise in how 

to integrate and simulate them. 
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