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Abstract – To successfully navigate the 

2005 DARPA Grand Challenge (DGC05) 

route we built four key innovations: custom 

Inertial Angle Sensor (IAS), Learning 

Dynamic Stabilization Controller (LDSC), 

Stabilized Sensor Platform (SSP) and 

combined stereo vision with color road 

following.  

Our single axis IAS is capable of 100KHz 

update rate with a resolution of 0.02 

degrees.  It is used for vehicle and gimbal 

pose estimation feedback into our LDSC and 

SSP.  

Our environment sensing has both a reactive 

(color road follower) and a planning 

component (stereo vision), enabling it to 

navigate an open road safely while safely 

reacting to avoid obstacles. 

 

1. Introduction 

1.1 Motivation - Autonomous vehicles are 

typically designed to be used in 

environments that are dangerous, dirty 

and/or dull.  However, the most dangerous 

and dirty applications are located in remote, 

narrow areas and require high-precision 

mobility.  Foreign mountainous regions and 

urban situations are two prominent 

examples. 

 

The percentage of this terrain that is 

accessible by a commercial 4x4 is small in 

comparison to the percentage of the terrain 

that is accessible to a motorcycle rider. 

 

 Figure 1. Ghostrider, our autonomous vehicle 

platform  

 

Four wheeled vehicles which possess the off 

road capability that is needed for use in 

dangerous Reconnaissance, Surveillance and 



Target Acquisition (RSTA) scenarios are 

often too large and heavy to be deployed 

quickly.  

 

To our knowledge there are however no 

existing autonomous or tele-operated 

motorcycles.  We seek to demonstrate the 

feasibility and showcase the advantages the 

platform possesses. 

 

 
Figure 2. Dangerous, remote terrain  

 

1.2 Team – Our team is composed of two 

groups one based in Berkeley, CA and one 

in College Station, TX.  Vehicle and 

hardware development, stability testing, 

Global Positioning System (GPS) navigation 

and 3D vision is conducted at the Berkeley 

site while color road detection is done in 

College Station, TX. 

 

The Berkeley group has seven (four 

graduate level and three undergraduates) 

core team members working between 10-80 

hours a week each.  

 

The College Station group has one core 

graduate student and one faculty advisor. 

 

1.3 Related Work – Our vehicle draws 

upon the work of many, most notably that of 

Vittore Cossalter's “Motorcycle Dynamics”, 

Neil Getz’s “Dynamic Inversion of 

Nonlinear Maps with Application to 

Nonlinear Control and Robotics”, Alonzo 

Kelly’s “Minimum Throughput Adaptive 

Perception for High Speed Mobility” and 

Andrew Ng’s “Inverse Reinforcement 

Learning”.  

 

2. Vehicle Description 

2.1 Mechanical Setup – Our vehicle is a 

commercially available off-road motorcycle 

with a <100cc engine with automatic clutch 

aimed at riders weighing less than 150lbs 

(rough weight of electronics is 100lbs.). We 

run the vehicle in second gear which gives 

us enough climbing power to go up a 30 

degree slope and provides us with a 



maximum speed of 40MPH. Substantial 

modifications were made to accommodate 

the electronics, power requirements and 

SSP. 

 

Rationale for using a motorcycle for the 

DGC05 is that the added complexity 

stemming from need to provide dynamic 

stabilization is out weighed by the 

advantages gained from a narrower profile.  

Computing platforms and current 

technology are well suited for controlling 

unstable systems dynamically, but are not 

good at perceiving their environment.  On 

the simplest level, a motorcycle effectively 

widens a traversable path by 3 feet on each 

side compared to the traversable path of a 

commercial 4x4.  

 

For starting, pausing and recovering from a 

crash we integrated two screw jacks that 

push on arms on each side of the vehicle to 

pick it back up in three seconds. 

 

All power is 24VDC, produced by engine 

and is stored in sealed lead acid batteries. 

 

2.2 System Architecture - Our system 

architecture revolves around our 

environment sensing platform.  Our GPS 

unit is used only for long range navigation, 

giving precedence to our vision system.  In 

the event of loss of localization, the vehicle 

will keep operating based on the 

environmental sensors to find an appropriate 

road and follow it. 

 

We use gigabit Ethernet as the 

communication layer for each component.  

There are two networks on the vehicle one 

dedicated for vision imagery transmission, 

and one for control and navigation. 

 

Sensors feed into a custom built signal 

conditioning board then to a Field 

Programmable Gate Array (FPGA) (xilinx 

Vertex 2e on Calinx board) sensor hub with 

hardware filtering and hardware network 

stack.  Sensor (GPS, IMU, accelerometer, 

FOG, IAS and encoders) data is broadcast 

over Ethernet (UDP) on the control network.  

This gives every PC onboard easy access to 

all information and simplifies data logging. 

 

Figure 3 System architecture of all the components 

on the vehicle 

 



Stability is performed by an embedded PC 

with an AMD Geode NX1500 1GHz 

Processor. Vision processing and navigation 

is performed on a Supermicro SuperServer 

with two AMD Opteron Dual Core 2.2GHz 

processors. 

2.3.1 Controls Description - Stabilization is 

achieved by rapidly monitoring the vehicle’s 

pose, speed and steering angle, using our 

custom built IAS (100KHz), speed and 

terrain static friction.  A model of the 

vehicle’s response is constantly being 

updated (100Hz) with feedback from the 

controller to minimize the error in vehicle 

motion.  

There are 15 forces that constantly act on a 

motorcycle while in motion on semi-smooth 

ground (no jumps, deep sand, or ice).  Only 

two are actuated inputs while 13 need to be 

controlled. 

Figure 4. Forces acting on a simplified motorcycle in 

motion, based off of “Motorcycle Dynamics”, Vittore 

Cossalter 
 

Controlling the vehicle was a major delay in 

the project.  Initially a fuzzy logic controller 

was designed to control the vehicle, but its 

complexity made it impossible to tune.  

Simple stability was easy to achieve using a 

Proportional Integral Differential (PID) 

controller. However, to get the vehicle to 

respond precisely to requested inputs 

required more modeling and simulation. 

 

We integrated three IAS along with three 

fiber optic gyros, three accelerometers and 

FPGA hardware into a package that enables 

us to measure vehicle orientation at 

100KHz. This sensor enables us to 

dynamically stabilize our vehicle at speeds 

of excess 30MPH.   

 

2.3.1.1 Fuzzy Logic Controller – To 

facilitate the development of the stability 

controller, a fuzzy logic controller was 

based off of team member’s intuition on 

how the vehicle should behave.  The 

controller had 125 parameters and worked 

well at speeds of 3MPH to 6MPH.  Tuning 

the controller to work at speeds of higher 

than 6MPH was too complex to try by hand 

and we did not want to build a simulator for 

the controller before getting better results.   



 

2.3.1.2 PID Controller – We devised a 

simple nested PID controller in an attempt to 

improve the range of stability and control 

direction of the vehicle. 

 

Stability range was immediately improved 

and directional control worked great on 

concrete or asphalt.  Changes of surface 

properties (during a turn) were not 

accounted for and the vehicle was not as 

responsive on a course with different surface 

types (grass, sand). 

 

It then became apparent that the integral 

term was extensively used to correct for roll 

angle error and steering angle error when the 

parameters were incorrect.  This became 

evident as we damaged the front of the 

vehicle and it no longer steered straight 

initially but still stabilized.   

 

Integral gain allowed the vehicle to stabilize 

well given physical damage, but contributed 

“sluggishness” (addition of a latency 

function) to the direction control.  The 

uncertain latency in turn adversely affected 

the vehicle navigation. 

 

 

 
 

Figure 4. Typical damage from crash during testing 

 

While it is possible to compensate the initial 

vehicle parameters (adjusting them to match 

the pre-damaged values) to minimize the 

need for integral gain, we decided to modify 

the controller so that it may detect its own 

errors and correct them in run time.  

Modifying the controller in run-time would 

allow us to account for surface changes and 

learning/refining of parameters. 

 

2.3.1.3 Reinforcement Learning -  

The process we followed for converting our 

PID controller to a run-time reinforcement 

learned controller is as follows: 

a) Created a stochastic model of the full 

vehicle dynamics 

b) Seeded the control parameters with the 

best PID values we collected 

c) Bounded the range for each parameter 

(with substantial ranges) to improve the rate 



of convergence and ensure minimum vehicle 

performance 

d) Conducted offline reinforcement learning 

e) Implemented new controller with learned 

parameters 

f) 50 miles of testing with fixed parameters 

g) Implemented run-time learning model  

h) Conduct testing (50 miles to date) 

 

Parameters have been seen to adjust 

substantially during the course of a run, but 

seem to be correlated to the surface 

properties and changes of direction in the 

requested course.  Comparing the learned 

fixed parameter runs to the run-time learning 

parameter runs; the vehicle performance is 

significantly greater (as measured by ability 

of vehicle to follow a requested motion 

within small tolerances).  

 

 Figure 5. Testing of ability to run on bumpy terrain  
 

 Figure 6. Testing of ability to run on bumpy terrain 

 

 Figure 7. Typical steering offset causing crash 

 

This seems to point to the fact that we are 

able to dynamically detect surface properties 

(bumps, sand, wind) and changes in physical 

characteristics of the vehicle during a run 

(tire pressure, steering offset, sensor offset, 

equipment vibration). Additional data is 

considered team proprietary. 

 

2.3.2 Result - Dynamically controlled at 

1KHz our motorcycle is stabilized to the 

ability of an amateur human rider.  It seems 

much better at dealing with collisions, 

vegetation and recovering from bad 



situations (extreme roll angle).  The 

controller is not as good as a human in 

situations were changing the vehicle’s pose 

without steering would be beneficial such as 

when airborne.  This can be addressed by 

the addition of a Control Moment 

Gyroscope (CMG), which would allow us to 

keep the vehicle vertical while standing still. 

 

3. Vehicle Controller – We have integrated 

all of the required electronics into a small 

(9” x 8” x 4”) rugged box designed to meet 

MIL-C-5015 and IP65 specs.  Included in 

the box are: two AMD Geode NX1500 

embedded PCs, Xilinx Spartan 3 FPGA 

motor controllers, brushless amplifiers, three 

axis IAS setup, sensor hub FPGA and status 

LCD. 

 

Figure 8. Open LDSC with exposed wiring 
 

This box is designed to be suitable for 

controlling almost any vehicle as it is 

capable of controlling several motors at 

substantial torques as well as having Gigabit 

Ethernet connectivity, 8 RS232 inputs and 

20 high power relays (10 mechanical, 10 

solid-state). 

 

The LDSC runs our run-time learning 

controller for both autonomous and non-

autonomous mode.  The vehicle can then be 

run in non-autonomous mode tethered via 

Ethernet.  Normally non-autonomous 

movement is done by pushing the vehicle 

while running the navigation control. 

 

The LDSC is programmed to allow the 

vehicle to cross LBO’s as the environmental 

sensing deems necessary.  However, 

excursion from LBO by more than 33 feet 

(10 meters) will cause the vehicle to 

increase GPS navigation weight forcing it 

back on to the course.  An excursion of 66 

feet (20 meters) will cause the vehicle to 

stop and disable itself (for safety reasons). 

 

4. Stabilized Sensor Platform Gimbal 

(SSP) – Navigating an autonomous vehicle 

requires accurate feedback from sensors 

about the surrounding environment. Vehicle 

movement over unstructured terrain causes 

orientation errors in the vehicle’s sensors.  

The accurate pointing and orientation of the 

sensors is critical in forming a coherent 

picture of the environment.  To stabilize our 

sensor package, we have built a gimbal and 



a controller that operate at 12K Hz to 

stabilize rotational errors down to 0.2 

degrees.  High precision, high accuracy 

harmonic gearing is used in the actuators of 

the SSP.  The SSP uses HD Systems FHA 

family actuators with 50-1 reductions. 

 

 
Figure 9. Image of beta testing our SSP 

 

The SSP does not stabilize translational 

movement (typically less than 6 inches for 

our vehicle).  

 

The SSP is mounted in the front of our 

vehicle over the front wheel to minimize 

debris obstructing the sensors.   The 

performance and frequency response of our 

SSP has not been characterized to date.  

Further information will be available online 

at www.laraison.com as tests are conducted. 

 

5. Processing – Our vehicle uses several 

types of processing onboard for performing 

stability, navigation and sensing tasks. 

 

5.1 Microprocessors – We have six CPU 

cores available for processing on the 

vehicle. Four cores are dedicated to vision 

processing.  They are located on a 

Supermicro SuperServer dual CPU dual-

core AMD Opteron 275, each operating at 

2.2GHz.  Of the four vision cores, three are 

dedicated to 3D reconstruction and one for 

color road detection. 

 

 Figure 10. Supermicro SuperServer Dual Code 

AMD Opteron 
 

The other two cores are AMD Geode 

NX1500 operating at 1GHz running two 

embedded pc’s inside the LDSC and SSP. 

   

5.2 FPGAs – We have five Xilinx FPGAs 

on board our vehicle.  A Xilinx Vertex 2E 

handles all of our sensor watchdog, format 

conversion and Ethernet (UDP) distribution. 

 

Two identical AlphaData ADM-XP with 

Xilinx Vertex 2 Pro 100 each processes 



black and white image by performing 

filtering and transformations to correct 

image distortion before computing disparity.  

 

Two Xilinx Spartan 3 are used to perform 

high speed motion control for steering and 

SSP as well as processing encoder and hall 

sensors for brushless HD Systems FHA 

actuators. 

  

5.3 Signal Interfacing – Integrated into our 

LDSC is a signal conditioning board that 

enables the 3.3V tolerant Xilinx Vertex 2E 

to communicate at RS-232/422/485 levels 

with sensors. 

 

 
Figure 11. E-stop safety receiver interface board 
 

To simplify interfacing with the DGCRX 

system we built a custom board that contains 

a small ATMEL microcontroller.  The 

microcontroller interfaces with the safety 

receiver and communicates to the sensor hub 

FPGA.  The safety receive interface board 

contains 10 mechanical relays and 10 solid 

state relays. 

 

5.4 Complex Programmable Logic 

Devices (CPLD) – Our vehicle’s starting 

arms are controlled by MOSFETS switched 

by Xilinx CPLDs. 

 

6. Navigation 

6.1 Localization – Our vehicle testing has 

shown that we do not benefit from DGPS 

while running.  DGPS is unreliable and 

causes jumps in our desired direction and 

position when quality of fix occurs.  Jumps 

in our position or orientation are not 

favorable to our navigation algorithm at this 

point.   

 

We have selected a unit manufactured by 

Topcon Positioning Systems called MapHP 

which can receive both the Omnistar VBS 

(claim of sub meter, which we occasionally 

see) and HP (claim of 5 centimeter, which 

we have never seen) correction service that 

tracks both GPS and GLObal NAvigation 

Satellite System (GLONASS), Russian 

version of US GPS, satellites. Typical 

coverage for us is 10 GPS and 4 GLONASS 

satellites.   

 



Figure 12. Topcon Map HP receiver on top of 

Ghostrider during endurance test in Nevada 
 

Both DGPS (VBS and HP) correction 

services are activated but corrections are 

received about 10% of any given run on a 

realistic DGC05 course (contains foliage, 

canyon and urban canyon features). 

 

We use no map data. 

 

6.2 Navigating principal – Environmental 

sensors are the most important piece of 

equipment for successfully navigating the 

DGC05.  Our vehicle uses GPS as a sensor 

providing guidance, not relying on it to 

navigate along a path.  Vision provides what 

the vehicle thinks is the most likely 

traversable path weighted by desired 

direction.  Direction information is not 

needed for instantaneous feedback regarding 

vehicle positioning on the path.  We assume 

there is a feasible path and vision will 

always output a direction.  

 

7. Sensing 

7.1 Equipment – Our vehicle uses only 

cameras as the sole means for environment 

detection.  The cameras we use are 

manufactured by Cognex.  Two different 

types of cameras are used:  

a) Cognex InSight 5304 - Black and white 8-

bit, single CCD, 1600x1200, 15fps, Ethernet 

interface with onboard computation 

capabilities. 

b) Cognex InSight 5400C – Color, 24-bit, 

3CCD, 64x480, 60fps, Ethernet interface, 

with onboard computation capabilities.  

 

 
Figure 13. Image of camera setup 
 

7.2 Road detection – Our vehicle’s road 

detection software is based on a mixture of 

published well known algorithms.  Key 

innovation was identifying the proper 

selection to implement.  The selection 

criteria were heavily biased towards 

performance in terrain similar to the Mojave 



Desert.  Color and texture information are 

essential to the performance of the system. 

 

 
Figure 14. Image of favorable color texture 
 

 
Figure 15. Image of perceived road direction 
 

7.3 3D Reconstruction – Based off of the 

best published disparity algorithm we could 

find.  Key innovation was reproducing the 

results and generating optimizations for real-

time computation. System operates at 4 Hz, 

has a base line of 8 inches and range of 25 

meters. Obstacles are easy to pick up.  Road, 

which lacks texture, is not as evident by the 

images below.  

 

Figure 16. Image of 3D reconstruction with high 

rejection, not missing data for asphalt. Color 

represents distance 
 

Figure 17. Image of 3D reconstruction with low 

rejection note invalid background measurements. 

Color represents distance 
 

Purpose is to detect obstacle and identify 

forward part to take in the following 500ms. 

 



7.4 Arbitration – The two visions systems 

are complementary in that they both work 

well at one task that the other does not. 

Color road detection has difficulty 

identifying obstacles vs. changes in road 

color while 3D can detect obstacles but has 

hard time picking up asphalt roads or 

smooth trails. 

 

Currently our vehicle performs using only 

one of the two sensing schemes.  The reason 

for this is that to-date, we have not 

implemented the Unscented Kalman 

Filtering UKF that we wish to use for fusing 

the two sensing inputs. 

 

The reason for using a UKF is that the 

estimated state and covariance are 

augmented with the mean and covariance of 

the process noise, which in this case is the 

rate of error of our sensing scheme, a 

parameter easy to measure but difficult to 

characterize. 

 

8 Testing – We view testing as the most 

important part of our team’s approach to 

DGC05.  Software system tests in laboratory 

settings were kept to a minimum to 

maximize the time and number of trials 

under real world conditions.  Hardware was 

integrated as early as possible to have weak 

components break so that replacement 

components could be found.  Wiring was a 

key factor in ensuring quality.  We spent a 

significant portion of our time testing the 

wiring setup. 

 

 Figure 18. Testing of self-righting arms 
 

Once the vehicle is operational, it goes out 

for testing twice every week.  The vehicle 

has gone through two full revisions (rebuilt 

from engine up) in the year and a half before 

DGC05.   

 

 
Figure 19. Alternative chassis version 
 



Figure 20. Testing the operation of Ghostrider 

“rubber-side-up” 
 

Figure 21. Accidental “washing” of Ghostrider 
 

In total there have been over 800 runs of the 

vehicles with a total mileage of 400 miles, 

most of it in 10+ mile runs. Our testing 

grounds have been at Lake Winnemucca in 

Nevada, which we found as a suitable 

DGC04 course replacement. 
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10. Future Work – We intend to fully 

characterize the motorcycle platform using 

our LDSC.  With that capability we will be 

able to develop a high performance data 

acquisition platform for motorcycle testing 

(suspension, tires and handling) and racing.  

In addition we intend to commercialize our 

IAS (specifications are 0.02 degree 

resolution, 100KHz update rate, 1 degree / 

hour bias, very stable over wide temperature 

range (-10C to 55C), target price $1,999).  

We also intend of making our SSP and its 

motion controller available for a variety of 

applications. 

 
 

 


