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Electronic Sources Above 100GHz
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Terahertz Imaging Focal-Plane Technology
(TIFT)
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Technical Goals

Sources Detectors

* Increase available sub-MMW power to 10mW, with a
path to 100mW (10 to 100X increase®*)
» Achieve 1% wallplug efficiency (nearly 100X increase*)

Micromachined Vacuum Electronics* Direct Detectors
uc
Santa
Northro Grumman I—
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Regenefativé Amplifier ErAs Diodes

* Work on diamond BWO by GENVAC Aerospace also supported by SBIR funding

Phenomenology & System Model
Photonic Downcoversion * Define FPA requirements for TIFT imaging
through IR-blind conditions

Stanford . _ " THz transmi _ I

Cascaded OPO

. Spé€tral Featureg of
NVESD / Ohio State Collensed Matter

*Comparisons referenced to 0.65THz - o -
Approved for Public Release, Distribution Unlimited T



TIFT Performers

NGC: Micromachined TWT regenerative amplifier
NVESD: THz Imaging Phenomenology &

190 — Ig System Performance Model
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Genvac: Wafer scale manufacturing Stanford: Cascaded optical down- UCSB: Single-crystal ErAs:InGaAlAs
of diamond and gold BWOs conversion based source at 1.5 rectifier based direct detectors
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Improvements in Phase IB i S
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Micromachined TWT

Larger Body Can

Gun Can
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Circuit redesign for
higher current operation

TIFT 1B Ideal + Thermal

~ = Increase beam transmission
fm om om0 ow  m  m e from 39% to 79% by reduced
edge emission, beam deflection

unit Goal Achieved
prEm———
Power mwW 16 98 Collector Cross Section
Efficiency % 1.0 0.83
Operating frequency GHz >557 595
Duty cycle % 50 3
Bandwidth GHz 15 61*

Collector efficiency: 92.4 %

Electron Beam

d
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Sub-millimeter Wave Imaging Focal-Plane
Technology (SWIFT)
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AHCIOS VS TEMS TECHIOLOGY OFFiCE

Sub-MMW Sources Sub-MMW Receivers

 Ultrafast power amplifier MMICs » Ultrafast LNA MMICs and mixers
 Highly efficient * Low noise figure receiver
35 B 0
> e - S -
% * = o SOA HEMT LNAs
B N 2 _ L X
' SOA PA MMICs -9
25 - A ' ' o 4 =
T v > s R > g . >1.5x increase in frequency
T 20 . £ 6 . -
= o SWIFT =) y
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10,000
. . 1,000 -
Imaging Array Architecture
* Minimization of LO power g 100 |
* Low loss interconnects *
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Frequency of System (GHz)
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35nm InP. HEMT Devices

SWIFT Accomplishments

World’s Fastest MMICs

35nm gate of InP HEMT with record Gm = 2300mS/mm
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NORTHROP GRUMMAN

MAG@340 GHz > 6 dB for both model & measured results
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World Record Sub-MMW MMICs (“s-MMIC?”)

3-stage Power Amplifier @ 330 GHz
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3-stage Low Noise Amplifier @270 GHz
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First s-MMIC: a 347GHz HEMT VCO
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30— 60
1 L %limw Model U - * 4 finger 60 um device
251 N ik 50 —1-110 GHz; 140-220 GHz
= - Mzﬁglglr;o;clzjade * TRL cal structure used
% 20_: N T - — Better 140-220 GHz
§ = Fog B measurement accuracy
9 ] - 2|+ U follows predicted
% 10- 20 | model
0 N\ : » MSG follows both trend
5 \\ 10 & predicted model
: A\ | - H21 follows both trend
M. | R & predicted model
n T 7oA predicted mode
o = N N
Frequency [HZz]
NORTHROP GRUMMAN
///*
of ..~ 1.2 THz; f; ~ 500 GHz

 Measurements extended to 200 GHz follow gain and H21 trends

Approved for Public Release, Distribution Unlimited



0.32 X 6 pm?2
J. = 18.7 mA/pm?2
Vg =0V

f- (25 °CI-55 °C)
- 765 GHz/845 GHz

L il ] |

| fuax (29 °CI-55 °C) .. :
227 GHz/263 GHz \

— 25°C
—-55°C

gl

Reduce
base
contact
junction
area

Drwpmrirrmed of Sipclricsd sod Gompoier Englinesring

u-bridge Base Contact

Approved for Public Release, Distribution Unlimited



What Does an s-MMIC Look Like? Fiii-=
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Sub-MMW Metrology:

Another DARPA-Hard Challenge

Things that don’t exist at 340 GHz...

* lIsolators

— Impedance control for power and noise measurements
* Rotary vane attenuators

— Calibrated loss
* Low loss couplers

— In-situ power calibrations
* Low loss probes

— De-embedding noise measurements
* Power amplifiers

— Input power margin in power measurement
* Impedance tuners

— Noise/load pull measurement

!
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Features
e Sub 50 nm gate InP HEMT
* 2-mil InP thickness with compact vias
» 3-stage MMIC LNA (2f 20 um per stage)
- 21 dB gain @280 GHz (7 dB/stage)
- 17 dB gain @300 GHz (5.7 dB/stage)
- 15 dB gain @340 GHz (5 dB/stage)
- Some LNAs show 18 dB gain@340 GHz

* JPL designed integrated radial probes & WR3
fixture (cutoff < 285 GHz & > 340 GHz)

» Amplifier fixture measurements taken and
referenced to waveguide flange

- 4-6 dB loss due to transitions & waveguide

- fixture & on-wafer measurement data
matches from 290 — 330 GHz

* Highest frequency MMIC amplifier ever demonstrated
» Excellent match to simulation validates model

* Fixtured amplifier validates measurement
» Validates THz fmax Transistor claim NORTHROP CRUMMAN
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High Frequency Integrated Vacuum
Electronics (HIFIVE)
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High Frequency Integrated Vacuum

—

—

Electronics (HIFIVE)

Objective
Develop the first all-integrated (“chip-scale”) vacuum
electronic devices for high-power millimeter-wave sources

Technologies

* Si micromachining

* High aspect-ratio interaction structures

* Integrated, high current density cathodes

SOA Today EIK, CPI Canada

. 220 GHz ImpaCt _ b

.« 5W* Today: « High bandwidth, LPlI communication systems
* Not integrated High frequency sources * High-resolution radar

» Manufacturable vacuum electronics process based on
standard MEMS rather than custom & expert machining

HIFIVE Phase lll

» 220 GHz

* 50 W

* Fully integrated*

* 500 W-GHz Power Bandwidth product

* In development are large, expensive,
and performance-limited

HIFIVE Phase Il
» 220 GHz
*50W

* “MPM” level of integration (compact module)*
» 250 W-GHz Power bandwidth product

* Cathode, gun, interaction structure, collector, driver, HV source

*MPM = Microwave Power Module HiFIVE: Small, high power-bandwidth source
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Program Impact

Source for high bandwidth datalinks 100 -
1 =B log, (1 + SNR) 0|
» Offers ~10x higher Shannon capacity than Ku-band 1 B = Bandwidth (Hz)
(for same antenna area), or @ « | SNR=Signaltornoise ratio
» Offers ~100X smaller antenna area than Ku-band ]
(for same Shannon capacity) > 10 ol . W In air with
- 10ptimize carrier .
r — 'g 1" frequency 7 4mm/hr rain
Today: UAVs use Ku- band §' |
MPMs for tactical comms i
= E
© ] "
£ 71| SNR assuming:
o 1| « 75mm x 75 mm aperture
|| 5 km range
« 30° slant angle
First high power source above 200GHz 10 100 1000
» Power density / power-bandwidth product at 220GHz Frequency (GHz)

comparable to the best available at any frequency

1000; B
s | .
= |
O 100 4-M---------------moooomooooooooooo oo oaen
2 ;
(]
o
()
o |
© 10+
Q 3
2 B Standing wave .

B Traveling wave !
1 ‘ — . ‘ ‘ —
90 110 130 150 170 190 210 ' 230

Frequency (GHz)

Micromachined TWT process
* End reliance on custom machining
» Extensible to wide range of frequencies

Tactical communications
« Commercial sources
and receivers currently

are virtually unknown
at 220GHz
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STETS TECHTIOLOGY OFFICE

Unexploited atmospheric window Microfab Required
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Why Now?

HIFIVE Enablers

Micromachining Approaches Achieving Fine Novel Field Emitter Array Cathodes with
Surface Smoothness and High Aspect Ratio Improved Current Density

B A

o
R

it

S

ey

.-

Lo

» High precision machining of interaction structures » Compact and efficient
» Structures susceptible to outgassing adsorption * Very short lifetimes
» Depth of structure difficult for many techniques * Further increase in current densities needed

High Frequency MMIC Process THz Frequency TWTA Demo

-

Cals<
* Frequency of operation now well beyond 220GHz * High precision machining at frequency
* Need to increase power * Round beam
* Integrating the device is difficult (~6dB loss) » Lower frequency structure more difficult
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What Is Compact?

PA size can be dominated by Substantial engineering has miniaturized &
the high voltage power supply flight qualified HV power supplies to ~20kV

e ]Ii =

COOLANT I

Fixed upper limit on circuit magnetic field B, ., due

to permanent magnet technology (~ 11 kG)

Practical upper limit on beam voltage ~ 20 kV

In HIiFIVE, we expect V < 20kV and B,_. < 11kG

max

Approved for Public Release, Distribution Unlimited



High Power MMIC Driver < —High Aspect-Ratio Devices

» Accommodate relatively low VE » High efficiency interaction structures

gain at 220 GHz

SENERDr

igh Current Density,

Long Life Cathodes ¢

* High unfocused current
density (~100A/cm?)
« Life > 10% hrs

* Single vs. multi-beam topologies

* Magnetic compression to achieve high aspect ratio beam
(N~100)

» Mitigation of parasitic oscillations

\ v

TSGRV & & SN

N
High Efficiency

' b : ’ Thermal Management
ngh Precision Micromachined * Mode confinementlgduction of beam
Fabrication and Integration interception
» Achieve required smoothness & aspect ratio * Aggressive thermal management
 Material/technology/process compatibility (mat’ls and structures)

» Heterogeneous integration
* Maintain high vacuum
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THz Integrated Electronics
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What Has Changed

1. “Cheap” THz sources becoming available - Essential for transmitters -ﬁﬁm
» Enabling for heterodyne receivers .
100 -
P L 5 C XK KK;QUVEW 1 TIFT IB
Microwaves MW EUFI:E?I';-'IW Infrared Visible
i | | ' ' ’ ® TIFT >100X power
g e S >100X efficiency
‘.é 1.E-02fF ________.---"'" é
g 1.E-Qdp E
E 1.E-5 = 5
o 1 4
1.E-08} A Pre-TIFT
g 1;]9 lém 1611 f(Hz) 1612 1013 1014 1015 ]
llm lcicm Iclm 11:’m1 D_llmm 1ﬂlum 1-_:m N
0.01 0.1 1 10
Efficiency (%)
2. THz processing electronics now possible
» Existing devices have substantial THz gain » High-yield MMIC process at 340GHz
10 5dB/stage —
@ 9; @0.34Tflz = =
o 8 1 (meqeiid) 3.5dB/stage
o 7 SVV”:T @0.67THz [ i - S
5 6 | (projected) l 1 i dr—d ——
g’. e 7\ \) H Ialn.."-m.l'ﬂm. ‘.‘"‘ n u tv ::IE. £l
4 re_s - - -4
(O)
< 2
3 1]
0 : : —_—

100 1000
Frequency (GHz)
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What Hasn’t Changed:

“For THz, SNR is King”

Attenuation of Signal by Atmosphere Dynamic Range Needed for
Applications
Linear Log

Losses in “worst case” environment 2 300 dB/km

1eves Signal
processing
1E+04
g
o
S
.s 1E+03
E Bit error rate /
< channel
% 1802 capacity
g — Bangkok
< Basra
Berkeley
1E+01
— Bellingham
T T T Boulder
850 GHz  1.05 THz 1.5 THz — Buffalo g .
1E+00 : : : : : : : : : : 1 1 1 1 | Interferlng
500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 p
Frequency (GHz) SIQnaIS

Any terrestrial THz front-end will be severely challenged

to achieve the highest possible SNR
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a
Terms that depend
SNR = Pt X B,—f X on the specific
k TB,fN Bvideo application
—

| Johnson-Nyquist (Thermal) Noise Limit -
200 ] . SNRO
Mixer + Coherent + LNN - ; y
ncorpora N t = lransmit power
T s B,; =RF bandwidth
T : :
Mixer + Coherent zLNA B::deo = Integration bandwidth
180 - A N = Noise figure
— _ J ', for non-coherent integration
= Incorporate phase control 8 '{ 1, for coherent integlration '
m | into transmit circuit
2 190 1 Mixer \
© i
DZ: A
o 140 Integrate sub-harmonic
mixers with MMIC amplifiers
to provide the LO
120 TIERREoraal (Normalized to 1W transmit)
iv
TIFT Result — ™
pre-TIFT SOA
100 T 7 T T N\#\ L LI WL L
10 100 1000 10000
Assumptions: Frequency (GHz
Byigeo = 1 Hz, P, = 1W 9 y( )

Through integration, huge increase in SNR is achievable;
~70dB compared to direct detection, ~40dB compared to SSB mixer
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SNRO (dBW)

300 -

280 -

260 -

240 -

220 -

200 -

180 -

Johnson-Nyquist Limit (300K)

Thermal Limited Region

160

(Electronics)

o

P, = hvB/2

Quantum Limited Region
(Optics)

TTT TT T T

0.01 0.1 1 10

Frequency (THz)
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THz Integrated Electronics

Pre-TIFT

Direct Detector
500 pW/Hz05 —4 t
Detector
TIET +42.3dB
Mixer/IF
~100 mW —_
(Goal: 16mW) M 4
Integrated Receiver

4 pW/Hz05 Direct LNA (650GHz)
(Goal: 1 pW/Hz°5) Detector ——w
LO
THz Electronics
+60dB ‘ >

out

~100 mW

\ LO Driver (300GHz)

Coherent N
i 4 Chip-Scale Integration

Receiver
¢ Low-loss, high frequency Interconnects
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THz Integration Allows Huge Potential
SNR and SWaP Gains

s

LO Driver 650 GHzLNA SOA TIE Mixer/IF

Power dissipation (mW) 500 <100 NF (dB) N/A 10 ? Bandwidth (GHz) 6 50 ?

“Multiplier chain Gain (dB) N/A 2572 Noise figure (dB) 14 12 ?
*SSB mixer

State-of-the-Art (SOA) i THz Integrated Electronics

Conventional 650 GHz Sub-System
¥ ) '{.

Receiver

NF (dB) 24.3 12 ?
Gain (dB) -4.3 >20
Volume (mm?3) 5x 10° 57
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Technical Challenges

to Realizing a THz Integrated Circuit

» Size scaling
» Mitigation of parasitic impedances
* Thermal management

Terahertz Transistors THz Monolithic Integrated Circuits (TMIC)

* Low-loss HF interconnects

* Integration of mixer diodes | == i
with transistors :_‘"_m" T

« Extrapolation of device I —— TP

models to THz frequencies

* High gain amplification

* Increase P_, despite
inclusion of filter & antenna
into interaction structure

* Wide bandwidth

* Low-loss fixtures and
transitions @ THz

 Traceability / validation

* Turnaround time / cost due

to lack of automated test
equipment

A Ty G005 (He
ToF Sren

* Integration of solid-state RF with HPA
* Low-loss high frequency interconnects
* Yield/uniformity of components

Transmitter Module Integration Receiver Array Integration

* Low-loss distribution of high-frequency signals

* Precise alignment
& interconnect
tolerances

* Yield/uniformity
of components

ease, Distribution Unlimited



« A more sophisticated view is emerging of what is required to enable
practical THz systems
— THz devices - THz circuits
* Not just sources!
* Much higher level of integration
* Increased functionality
— Huge gain in size/weight/power/cost
— Huge gains in performance
 Low noise amplifiers at frequency
* Coherent processing

e THz Electronics

— Compact THz vacuum electronics established

— THz transistors are now here
* Limits to speed incompletely understood
* Substantial room for improvement

— THz integrated circuits aren’t far behind

Through integration, huge increase in system SNR is achievable
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Questions?
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