I am here to talk to you about embedded information systems, and about three new programs in this area.

Information technology... or IT, has many ranges of applications. Most software is intended to move, manipulate, and search information. Some software, however, is intended to cause physical changes to the environment, controlling motors, actuators, sensors, and other devices.

Software that interacts with and changes physical processes is called embedded software... and the field of embedded information systems deals with the process of creating embedded software.

Embedded software is different than code that operates on a scientific workstation. Because it has to work in real time it has to worry about the interaction between all processes that can affect the system... and system crash is not only a metaphor. Avionics systems, for example, should not wait on a garbage collection operation in the midst of a critical flight maneuver.

The situation with the field of embedded information systems is a mess.

I am going to tell you about some of the problems, and what DARPA intends to do about it... with your help.

The Department of Defense has special needs in embedded software. From avionics systems, to smart weapons, embedded computing is the key ingredient for superiority in weapon systems. But time and time again, advance estimates of performance, cost, and development time have been wildly inaccurate.

Changing specifications create huge cost increases. Continually, developers blame unforeseen complexity. Of course the systems are complex. Department of Defense applications are inevitably complex.

However, to find a remedy we need to give a better explanation; we need to explain the source of complexity.

The reason these projects face huge complexity problems is the expanding system integration role that IT plays in DoD systems. In many DoD platforms, from integrated avionics systems to unmanned/autonomous vehicles, systems integration has become critical, and is increasingly done in software. Consequently, larger and larger partion of embedded software gets involved into closed-loop, tight interactions with physical processes.

The question is, how can we create design technology to facilitate this new integration role of software?

Virtually all new weapon systems from F-22 to National Missile Defense, and from Future Combat Systems to UCAV, depend on embedded software. The level of software complexity in these systems is unparalleled. For example, the Crusader relies on more than 1.7 million lines of Ada code, while the F-22 has over 2.1 million lines of Ada code.

Embedded information technology has major significance for many other industries. The automotive industry considers on-board electronics and drive-by-wire solutions as key competitive technologies of the future. Embedded information processing is core technology for many consumer electronics applications. Plant automation also builds on embedded software.

However, it is safe to say that DoD applications tip the scales in complexity, heterogeneity and pervasiveness of embedded computing.

Last year, the DARPA Information Technology Office conducted a study that analyzed the current and future technology challenges of embedded software.

We identified three main technology themes where significant progress needs to be made for both DoD and commercial applications.

First, there's the “Software and Physics” theme, which refers to the challenge of composing software to achieve specific physical behavior between the sensor-actuator interface of computing devices.

Second, the theme called "Embracing Change" focuses on problems caused by system-wide constraints and interdependences accumulating in the embedded software.

Finally, the "Dealing with Dynamic Structures" theme refers to embedded systems hosted on networks of processors.

Let's talk about these technology themes.

I am going to tell you about three new exciting research projects that we are getting underway. With these projects, we hope to solicit the support of the research community to solve the problems of embedded information systems.

Before talking about the technology themes, let me first mention three basic research topics that perhaps can play a significant role in delivering major productivity increases in embedded software.

First, there is this analogy with phase transitions in thermodynamics to parameter variations in computationally intractable problems. Recent findings in theoretical computer science, graph theory, and statistical physics have shown that many, possibly all, computationally hard problems exhibit phase transitions separating the hard and easy problems. This finding may be useful for developing a new generation of "transition-aware" constraint solvers, planners, and schedulers that will help to detect and avoid computationally hard problem instances.

Second, there is the emerging theory of hybrid computational models. As we know, physical processes are frequently modeled by continuous dynamics, while information processing systems are usually modeled by discrete state models. Analysis and design of embedded systems, which tightly couple these two system categories, require new theoretical foundation. The emerging theory for hybrid systems and hybrid computational models promise to deliver new analytical tools and design methods.

Third, there are new results in model-based software generation. "Handcrafting" of embedded software is extremely inefficient due to the complex interdependencies with physical systems. Model-based software generation technology, which uses models of the physical environment, together with aspect-oriented programming and a domain-specific programming languages promise breakthroughs for major productivity increase.

Now, back to the technology themes that were identified for embedded software challenges.

The first theme was called "Software and Physics."

The embedded computing device viewed from its sensor and actuator interfaces acts like another physical process, with dynamic characteristics, fault characteristics, etc.

The role of the embedded software is to configure the computing device so as to meet physical requirements, so we need to specify those requirements carefully and precisely. This is hard, because we have to mix continuous models of the environment with discrete models of the software state, and the models may be incomplete. Further, there may be many interacting constraints, due to shared resources.

How do we normally deal with complex design problems in engineering? We use modularity and composition, that is, building larger systems from smaller, simpler parts.

Unfortunately, composition of embedded software is very difficult. The condition for composition to work is that subsystems preserve their properties after they are combined together. Without composability we are not able to predict the properties of the aggregate.

In non-embedded software, where physical properties are secondary, functional composition is the focus of software technology.

The best concepts of modern component technologies such as objects, API's, connector mechanisms, all support functional composition.

No wonder that using current software technology, physical properties are not composable; they appear as crosscutting constraints in the development process. The effects of these crosscutting constraints can be devastating for the design.

Meeting specifications in one part of the system may destroy performance in others, and additionally, much of the problems will surface in system integration time. Consequently, we need to change our approach to the design of embedded software: productivity increase must come from tools and programming languages that directly address the design of the whole system with its many different physical, functional and logical aspects.

We can make use of existing design frameworks in computer-aided design, that is, CAD and EDA systems, and other Systems Engineering tools. However, these tools need to be extended. They will need customizable views for displaying embedded software and systems structure; they will need to support simulation at varying levels of resolution and fidelity; and they need to include automated analysis and code synthesis tools.

Accordingly, ITO has launched two research programs addressing the language and design technology for embedded software and systems. One program is called PCES, for Program Composition for Embedded Systems, and the other MoBIES, for Model-based Integration of Embedded Software.

Let me tell you about these.

Dr. Helen Gill manages the Program Composition for Embedded Systems, or PCES project. This project tackles the fact that languages for embedded software must address multiple design concerns beyond functional the aspect. PCES will create new aspect-oriented programming support that enables the separation of design views using aspect code. They will provide analysis methods that reason about the composition of aspects, and will develop technology that weaves together the aspect code into the integrated application code.

In the Model-based Integration of Embedded Software, or MoBIES project, embedded systems are viewed in their entirety. That is, embedded systems are viewed as the composition of physical processes, framework components, and software application components. MoBIES will address reusable components and tools for the rapid construction of highly domain-specific design automation environments for embedded systems. MoBIES design automation environments will use declarative modeling languages to represent information about designs. The modeling languages will be specific to the domain, and formal enough to create analyzable and translatable domain models. MoBIES synthesis tools then search for solutions that meet all of the required design constraints.

Composability for physical properties is achieved by multiple view modeling, which permits the designer to analyze the effects of decisions across interdependent modeling views.

Finally, MoBIES produces model-based generators. These generators take the completed and verified models, and generate the heterogeneous customization interfaces of framework and application components.

Remember the three technology themes identified for embedded software challenges?

The second technology theme was "Embracing Change" and concerns the effects and management of changes in embedded systems.

Most developers expect that embedded software will lend flexibility to platforms because software is easy to modify. Of course this expectation leads to disappointment, because in large systems, flexibility is the result of careful design and not the byproduct of the implementation media. Minor changes instead tend to have large consequences, since system-wide constraints tend to accumulate in the software in a hidden fashion.

Flexibility can be achieved by solving a system wide constraint management problem: constraints need to be explicitly represented and effects of changes need to be propagated both in design time and run time.

What about providing flexibility during run-time?

The PCES and MoBIES projects that we talked about deal with constraint management primarily during the design phase. The difficulty is that run-time composition of embedded software requires solutions not only for functional composition, but also for managing the previously mentioned crosscutting physical constraints.

Object component technologies, such as CORBA and COM, won't provide the flexibility that we are after.

There are two possible directions to take.

First, we can develop new, adaptable composition frameworks for embedded systems, that make run-time adaptation easy. This can be done by decoupling interdependencies among design views using carefully selected runtime constraints and allowing adaptation along these "orthogonalized" views.

The second possible solution is to build on existing object technology and extend it with internal mechanisms to manage the effects of changes in complex, densely constrained environments. This will require the much extended runtime use of modeling to create adaptable, "self-aware" components.

Finally, let's discuss the third theme for embedded information systems: "Dealing with Dynamic Structures."

Weapons systems are becoming increasingly "information rich." Monitoring-control and diagnostic functions penetrate deeper and with smaller granularity in physical component structures. Consequently, embedded systems are becoming distributed, requiring coordination among large number of information and physical processes. The transition to networked embedded computing is being accelerated by inexpensive MEMS-based sensors and actuators, and continued progress in microprocessor and communication technology.

Given this trend, the strong separation between physical and information processing architectures no longer makes sense and is not sustainable.

Information processing is increasingly intertwined with physical components, which makes coordination, distribution and embedding the fundamental technical challenge for software.

Accordingly, the Information Technology Office is launching a new project in this area, called Networked Embedded System Technology, or NEST. NEST will sponsor research in the area of distributed embedded information systems.

Let me tell you more about the NEST program.

In more abstract terms, networked embedded systems include a physical layer and an information layer. Embedded processing is in closed loop interaction with the physical layer. Global system behavior is achieved through the coordination of many local interactions. In the new Networked Embedded Software Technology program, we are talking about a hundred to a hundred thousand simple networked components. Further, in NEST, we have the possibility of changing interconnection topology, and dynamic changes to the tasks that must be performed.

Building highly dependable, robust, distributed control applications with hundreds or thousands of nodes is tremendous software and systems challenge. Let me mention two common, extremely hard problems facing application developers in this area. First, applications must be highly reliable, robust, and coordinate the many activities real-time. Second, they must operate in a dynamic, constrained environment, where the network of system components might be subject to continuous reconfiguration.

Accordingly, the primary objective of the NEST program is to develop reusable, optimizable services for coordination and time-bounded synthesis.

What sort of services do we have in mind? Coordination services include fault tolerant protocols, such as global time, general information exchange, distributed synchronization, replication and replica determinism. These services are crucial to making aggregate behavior of large networked embedded systems predictable and dependable despite local failures and anomalies. The services will be readily configurable for specific applications through automated composition, and will support partitioning despite critical and non-critical applications sharing the same architecture.

There are many challenges, hard problems to be solved in this task. Coordination service components must recover from the effects of unanticipated faults and system interferences. Coordination services need to be scalable to large number of nodes and they need to be able to satisfy hard time-bounds. NEST applications need to be protected against malicious nodes or input from malicious code and data sources.

We expect that this research task will result in a new generation of middleware for distributed control that can be built on the top of a variety of hardware and real time platforms.

The use of self-assembly, self-configuration, diagnosis and recovery and other forms of adaptation, are absolutely necessary, due to the size of NEST configurations, their tight integration with dynamic, non-stationary physical processes and limitations in component reliability. These capabilities mean that synthesis of control sequences, schedules, processing configurations, resource maps, etc. - usually performed at design time - will become part of real-time NEST operations.

What are the challenges of creating these run-time synthesis services? Well, of course there are the technical details and peculiarities of specific applications. But, the unifying difficulty is that search-intensive algorithms must be employed to solve multiple constraint problems, scheduling and planning, combinatorial optimization, resource issues and time bounds. These tasks can easily lead to computationally intractable problem instances. We hope that breakthrough on phase transitions will help to develop a new generation of transition-aware solvers for embedded synthesis.

It is time to wrap up by emphasizing the three core points of the talk. Embedded software is an important area of research for DARPA. We expect that information technology keeps its rapid expansion in all DoD platforms and will integrate ever deeper with physical processes. Exploitation of new technical opportunities requires answering tremendous challenges. The successful completion of ITO's embedded software programs needs attention and help from the research community. These programs want to accomplish not less than a new re-integration of physical and information sciences. We strongly believe that this work can be done, and DARPA's investment is critical to catalyze and accelerate this process.

Thank you for your attention.

